• Title/Summary/Keyword: Excess Flow

Search Result 299, Processing Time 0.025 seconds

Numerical Modeling of the Effect of Sand Dam on Groundwater Flow

  • Yifru, Bisrat;Kim, Min-Gyu;Chang, Sun Woo;Lee, Jeongwoo;Chung, Il-Moon
    • The Journal of Engineering Geology
    • /
    • v.28 no.4
    • /
    • pp.529-540
    • /
    • 2018
  • Sand dam is a flow barrier commonly built on small or medium size sandy rivers to accumulate sand and store excess water for later use or increase the water table. The effectiveness of sand dam in increasing the water table and the amount of extractable groundwater is tested using numerical models. Two models are developed to test the hypothesis. The first model is to simulate the groundwater flow in a pseudo-natural aquifer system with the hydraulically connected river. The second model, a modified version of the first model, is constructed with a sand dam, which raises the riverbed by 2 m. In both models, the effect of groundwater abstraction is tested by varying the pumping rate. As the model results show the groundwater after the construction of the sand dam has increased significantly and the amount of extractable groundwater is also increased by many folds. Most importantly, in the second model, unlike the pseudo-natural aquifer system, the groundwater abstraction does not have a significant effect on the water table.

Heat and Flow Characteristics During Melting Process of a PCM Inside a Liquid Flexitank for Cargo Containers (화물 컨테이너용 액상 백 내부 PCM의 용융 과정에 대한 열유동 특성 해석)

  • Lilong Sun;Joon Hyun Kim;Jaehoon Na;Jaeyong Sung
    • Journal of the Korean Society of Visualization
    • /
    • v.22 no.1
    • /
    • pp.6-17
    • /
    • 2024
  • This study examined the natural convection heat flow characteristics of the melting process of PCM (palm oil) inside a liquid flexitank(bag) for a cargo container. A film heating element was installed on the bottom of the container, and numerical analysis was performed under heat flux conditions of 1,000 to 4,000 W/m2. As a result, the melt interface of the PCM rises to a nearly horizontal state over time. In the initial stage, conduction heat transfer dominates, but gradually waves at the cell flow and melt interfaces are formed due to natural convection heat transfer. As melting progresses, the Ra number increases parabolically, and the Nu number increases linearly and has a constant value. The Nu number rises slowly under low heat flux conditions, whereas under high heat flux conditions, the Nu number rises rapidly. As the heat flux increases, the internal temperature oscillation of the liquid phase after melting increases. However, under high heat flux conditions, excess heat exceeding the latent heat is generated, and the temperature of the molten liquid is raised, so the increase in melting rate decreases. Therefore, the appropriate heating element specification applied to a 20-ton palm oil container is 2,000 W/m2.

Characteristics and Methods of Bandwidth Allocation According to Flow Features for QoS Control on Flow-Aware Network (Flow-Aware Network에서 QoS제어를 위해 Flow 특성에 따른 대역할당 방법과 특성)

  • Kim, Jae-Hong;Han, Chi-Moon
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.45 no.9
    • /
    • pp.39-48
    • /
    • 2008
  • Recently, many multimedia services have emerged in Internet such as real-time and non- real time services. However, in this Internet environment, we have some limitations to satisfy each service feature. To guarantee the service features in Measurement-Based Admission Control(MBAC) based system on the flow-aware network, there is the method applying Dynamic Priority Scheduling(DPS) algorithm that gives a higher priority to an earlier incoming flow in all of the link bandwidth. This paper classifies all flows under several groups according to flow characteristics on per-flow MBAC algorithm based system. In each flow group, DPS algorithm is applied. This paper proposes two methods that are a DPS based bandwidth borrowing method and a bandwidth dynamic allocation method. The former is that if low priority class has available bandwidths, the flow of high priority class borrows the bandwidth of low priority class when high priority flow has insufficient bandwidth to connect a flow call. The later is that the each group has a minimum bandwidth and is allocated the bandwidth dynamically according to the excess rate for available bandwidth. We compare and analyze the characteristics of the two proposed methods through the simulation experiments. As the results of the experiment, the proposed methods are more effective than existing DPS based method on the packet loss and delay characteristics. Consequently the proposed two methods are very useful in various multimedia network environments.

Effect of subsurface flow and soil depth on shallow landslide prediction

  • Kim, Minseok;Jung, Kwansue;Son, Minwoo;Jeong, Anchul
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.281-281
    • /
    • 2015
  • Shallow landslide often occurs in areas of this topography where subsurface soil water flow paths give rise to excess pore-water pressures downslope. Recent hillslope hydrology studies have shown that subsurface topography has a strong impact in controlling the connectivity of saturated areas at the soil-bedrock interface. In this study, the physically based SHALSTAB model was used to evaluate the effects of three soil thicknesses (i.e. average soil layer, soil thickness to weathered soil and soil thickness to bedrock soil layer) and subsurface flow reflecting three soil thicknesses on shallow landslide prediction accuracy. Three digital elevation models (DEMs; i.e. ground surface, weathered surface and bedrock surface) and three soil thicknesses (average soil thickness, soil thickness to weathered rock and soil thickness to bedrock) at a small hillslope site in Jinbu, Kangwon Prefecture, eastern part of the Korean Peninsula, were considered. Each prediction result simulated with the SHALSTAB model was evaluated by receiver operating characteristic (ROC) analysis for modelling accuracy. The results of the ROC analysis for shallow landslide prediction using the ground surface DEM (GSTO), the weathered surface DEM and the bedrock surface DEM (BSTO) indicated that the prediction accuracy was higher using flow accumulation by the BSTO and weathered soil thickness compared to results. These results imply that 1) the effect of subsurface flow by BSTO on shallow landslide prediction especially could be larger than the effects of topography by GSTO, and 2) the effect of weathered soil thickness could be larger than the effects of average soil thickness and bedrock soil thickness on shallow landslide prediction. Therefore, we suggest that using BSTO dem and weathered soil layer can improve the accuracy of shallow landslide prediction, which should contribute to more accurately predicting shallow landslides.

  • PDF

Verification of Numerical Analysis Technique of Dynamic Response of Seabed Induced by the Interaction between Seabed and Wave (파랑-지반 상호작용에 의한 해저지반의 동적응답 수치해석법 검증)

  • Kang, Gi-Chun;Kim, Sung-Woung;Kim, Tae-Hyung;Kim, Do-Sam;Kim, Jae-Hong
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.1
    • /
    • pp.5-14
    • /
    • 2015
  • Seabed may undergo large excess pore water pressure in the case of long duration of high wave loading. This excess pore water pressure may reduce effective stress and, consequently, the seabed may liquefy. Thus, it is necessary to develop a numerical technique which can precisely evaluate the dynamic response of seabed due to wave action. In this study, a new numerical technique named mixed model (2D NIT & FLIP models) was proposed. The dynamic wave pressure and water flow velocity acting on the boundary between seabed and the wave field was estimated using 2D-NIT model. This result was used as input data in FLIP program for investigation of dynamic response of seabed. To secure the reliability of the mixed model, the numerical analysis results of the mixed model were compared with Yamamoto's solution and Chang's experiment results. The comparison results indicated that there were some differences between them, but the general trend of the effective stress increment and the excess pore water pressure along the depth of seabed was similar to each other. Thus, this study clearly supports the plausibility of the numerical analysis of the mixed model.

Porous Glass Electroosmotic Pumps Reduced Bubble Generation Using Reversible Redox Solutions (가역적 산화환원반응 용액을 이용하여 기포 발생을 줄인 다공성 유리막 전기삼투 펌프)

  • Kwon, Kil-Sung;Kim, Dae-Joong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.7
    • /
    • pp.753-757
    • /
    • 2012
  • This paper presents the performance of a porous glass electroosmotic pump using an iodide/triiodide aqueous solution. The porous glass electroosmotic pump is characterized in terms of the flow rate and voltage. The flow rate and voltage increases linearly with current. A point where the voltage significantly increases is observed owing to an excess in redox capacity. The transition time monotonously decreases with current. The normalized flow rate (flow rate per membrane surface area) is used to compare previous results with results obtained in this study. The normalized flow rate of porous glass frits is three times higher than that of Nafion 117.

Evaluation of Impaired Waterbody and Multivariate Analysis Using Time Series Load Curve -in Jiseok Stream Watershed- (시계열 부하 곡선을 이용한 수체손상 평가 및 다변량 분석 -지석천 유역을 대상으로-)

  • Park, Jinhwan;Kang, Taewoo;Han, Sungwook;Baek, Seunggwon;Kang, Taegu;Yoo, Jechul;Kim, Youngsuk
    • Journal of Korean Society on Water Environment
    • /
    • v.33 no.6
    • /
    • pp.650-660
    • /
    • 2017
  • In this study, pollutant emission characteristics by water damage period analyzed 11 items (water temperature, pH, DO, EC, BOD, COD, TOC, SS, T-N, T-P and flow) with load duration curve, time series load curve and factor analysis for three years (2014-2016). Load duration curve is applied to judge the level of impaired waterbody and estimate impaired level by pollutants such as BOD and T-P in this study depending on variation of stream flow. Water quality standard exceeded the flow of mid-range and low-range by flow condition evaluation using load duration curve. This watershed was influenced by point source more than non-point source. Cumulative excess rate of BOD and T-P kept water quality standard for all seasons (spring, summer, autumn and winter) except BOD 59% in spring. Water quality changes were influenced by pollutants of basic environmental treatment facilities and agricultural areas during spring and summer. Results of factor analysis were classified commonly first factor (BOD, COD, and TOC) and second factor (flow, water temperature and SS). Therefore, effects of artificial pollutants and maintenance water must be controlled seasonally and reduced relative to water damage caused by point pollution sources with effluent standard strengthened in the target watershed.

Effect of $N_2$ and $O_2$ Properties of STS304 Stainless Steel Films Synthesized by Unbalanced Magnetron Sputtering Process (비대칭 마그네트론 스퍼터링법에 의해 합성된 STR304 스테인리스강 박막에서의 질소와 산소의 첨가 효가)

  • 김광석;이상율;김범석;한전건
    • Journal of Surface Science and Engineering
    • /
    • v.34 no.2
    • /
    • pp.89-96
    • /
    • 2001
  • N- or O-doped STS304 stainless films were synthesized by an unbalanced magnetron sputtering process with various argon and reactive gas ($N_2$, $O_2$) mixtures. These films were examined by scanning electron microscopy (SEM), X-ray diffraction (XRD), Auger electron spectroscopy (AES) and Knoop microhardness tester. The Results from X-ray diffraction (XRD) analysis showed that a STS304 stainless steel film synthesized without reactive gas using a bulk STS304 stainless steel target had a ferrite bcc structure ($\alpha$ phase), while the N-doped STS304 stainless film was consisted of a nitrogen supersaturated fcc structure, which hsa a strong ${\gamma}$(200) phase. In the O-doped films, oxide Phases ($Fe_2$$O_3$ and $Cr_2$$O_3$) were observed from the films synthesized under an excess $O_2$ flow rate of 9sccm. AES analysis showed that nitrogen content in N-doped films increased as the nitrogen flow rate increased. Approximately 43 at.%N in the N-doped film was measured using a nitrogen flow rate of 8sccm. In O-doped film, approximately 15 at.%O was detected using a $O_2$ flow rate of 12sccm. the Knoop microhardness value of N-doped film using a nitrogen flow rate of 8 sccm was measured to be approximately $H_{ k}$ 1200 and this high value could be attributed to the fine grain size and increased residual stress in the N-doped film.

  • PDF

A Study on the Applicability of Load Duration Curve for the Management of Nonpoint Source Pollution in Seohwacheon Basin (서화천 유역 비점오염원 관리를 위한 부하지속곡선 적용성 연구)

  • KAL, Byung-Seok;MUN, Hyun-Saing;HONG, Seon-Hwa;PARK, Chun-Dong;MIN, Kyeong-Ok;PARK, Jae-Beom
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.23 no.3
    • /
    • pp.174-191
    • /
    • 2020
  • In this study, we analyzed the vulnerable areas of non-point source pollutants and management pollutants and management time by subwatershed curves in the Seohwacheon basin located upstream of Daecheongho. First, in order to create a load duration curve, a long-term flow model SWAT was constructed to create a flow duration curve, and the result was multiplied by the target water quality to create a load duration curve. For the target water quality, monitoring data values measured from November 2017 were used for the management of nonpoint source pollutants in Seohwacheon, and a value corresponding to 60 percentile of the measured data was set as the target water quality. At this time, the target water quality was limited to"slightly good"(II) when the calculated value exceeded"slightly good"(II) of the river living environment standard. The vulnerable areas of non-point source of pollution were selected using the excess rate exceeding the target water quality, and the excess pollutant was judged as a management substance and the management time was selected through seasonal evaluation.

The Development of Scrubber for F-gas Reduction from Electronic Industry Using Pressure Swing Adsorption Method and Porous Media Combustion Method (압력순환흡착법과 다공성 매체 연소법을 이용한 전자산업 불화가스 저감 스크러버 개발)

  • Chung, Jong Kook;Lee, Ki Yong;Lee, Sang Gon;Lee, Eun Mi;Mo, Sun Hee;Lee, Dae Keun;Kim, Seung Gon
    • Clean Technology
    • /
    • v.23 no.2
    • /
    • pp.181-187
    • /
    • 2017
  • The perfluorocompounds (PFCs) emitted from the semiconductor and display manufacture is treated by abatement systems which use various technologies, such as combustion, thermal, plasma, catalyst. However, it is required that the system should overcome their drawbacks with excess energy consumption and low removal efficiency. The new technology using combination of pressure swing adsorption and excess enthalpy combustion for the reduction of PFCs emissions were developed and analyzed its characteristics. PFCs concentration ratio and PFCs loss factor were calculated from measuring concentration of PFCs at the calculated by comparing concentration of PFCs at the combustor's inlet and outlet. There were performance evaluations with various gas flow for comparing energy consumption and removal efficiency with existing equipments. The concentration ratio and the loss factor of PFCs were 1.65, 8.2%, respectively, when the total gas flow of the pressure swing absorption (PSA) inlet was 204 liter per minute (LPM) and $CF_4$ concentration was 1412 ppm. In comparison with existing system at constant condition, $CF_4$ removal efficiency for a porous media combustion (PMC) showed the improvement more than 16% and the consumed energy was also reduced up to approximately 41%. Then, the total gas flow introduced into PMC and $CF_4$ concentration were 91-LPM and 2335 ppm, respectively, and the destruction and removal efficiency of $CF_4$ was about 96% at 19-LPM $CH_4$, and 40-LPM $O_2$.