Browse > Article
http://dx.doi.org/10.3795/KSME-B.2012.36.7.753

Porous Glass Electroosmotic Pumps Reduced Bubble Generation Using Reversible Redox Solutions  

Kwon, Kil-Sung (Dept. of Mechanical Engineering, Sogang Univ.)
Kim, Dae-Joong (Dept. of Mechanical Engineering, Sogang Univ.)
Publication Information
Transactions of the Korean Society of Mechanical Engineers B / v.36, no.7, 2012 , pp. 753-757 More about this Journal
Abstract
This paper presents the performance of a porous glass electroosmotic pump using an iodide/triiodide aqueous solution. The porous glass electroosmotic pump is characterized in terms of the flow rate and voltage. The flow rate and voltage increases linearly with current. A point where the voltage significantly increases is observed owing to an excess in redox capacity. The transition time monotonously decreases with current. The normalized flow rate (flow rate per membrane surface area) is used to compare previous results with results obtained in this study. The normalized flow rate of porous glass frits is three times higher than that of Nafion 117.
Keywords
Electroosmotic Pump; Reversible Redox; Porous Glass Frits; Drug Delivery Device;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Jeerage, K. M., Noble R. D. and Koval C. A., 2007, "Investigation of am Aqueous Lithium Iodide/Triiodide Electrolyte for Dual/Chamber Electrochemical Actuators," Sensors and Actuators B: Chemical, Vol. 125, No. 1, pp. 180-188.   DOI   ScienceOn
2 Yao, S., Hertzog, D. E., Zeng, S. and Santiago, J. G., 2003, "Porous Glass Electroosmotic Pumps: Theory," Journal of Colloid and Interface Science, Vol. 268, No. 1, pp. 133-142.   DOI   ScienceOn
3 Bard, A.J., Faulkner, L. R, 1980, Electrochemical Methods, John Wiley & Sons, New Yourk.
4 Chen Y. F., Li, M. C., Hu, Y. H., Chang W. J. and Wang, C, C., 2008, "Low-Voltage Electroosmotic Pumping Using Porous Anodic Alumina Membranes," Microfluidics and Nanofluidics, Vol. 6, No. 2, pp. 145-162.
5 Yao, S., Myers, A. M., Posner, J. D., Rose, K. and Santiago, J. G., 2006, "Electroosmotic Pumps Fabricated from Porous Silicon Membranes," Journal of Microelectromechanical Systems, Vol. 15, No. 3, pp. 717-728.   DOI   ScienceOn
6 Zeng, S., Chen, C. H., Santiago, J. G., Chen, J. R., Zare, R. N., Tripp, J. A., Svec, F. and Frechet, J. M., 2002, "Electroosmtoci flow Pumps with Polymer Frits," Sensors and Actuators B: Chemical, Vol. 82, No. 2-3, pp. 209-212.   DOI   ScienceOn
7 Shin, W., Lee, J. M., Nagaralet, R. K., Shin, S. J. and Heller, A., 2011, "A Miniature, Nongassing Electroosmotic Pump Operating at 0.5 V," Journal of the American Chemical Society, Vol. 133, No. 8, pp. 2374-2377.   DOI   ScienceOn
8 Kwon, K., Park, C. W. and Kim, D., 2012, "High-Flowrate, Compact Electroosmotic Pumps with Porous Polymer Track-Etch Membranes," Sensors and Actuators A: Physics, Vol. 175, No. 1, pp. 108-115.   DOI   ScienceOn
9 Brask, A., Kutter, J. P. and Bruus, H., 2005, "Long-Term Stable Electroosmotic Pump with ion Exchange Membranes," Lab on a Chip, Vol. 5, No.7, pp. 730-738.   DOI   ScienceOn
10 Lin, C. W., Yao, S., Posner, J. D., Myers, A. M. and Santiago, J. G., 2007, "Toward Orientation-Independent Design for Gas Recombination in Closed-Loop Electroosmotic Pumps," Sensors and Actuators B: Chemical, Vol. 128, No. 1, pp. 334-339.   DOI   ScienceOn
11 Nagarale, R. K., Heller, A. and Shin, W., 2012, "A Stable Ag/Ceramic-Membrane/$Ag_2O$ Electroosmotic Pump Built with a Mesoporous Phosphosilicate-on Silica Frit Membrane," Journal of the Electrochemical Society, Vol. 159, No. 1, pp. P14-P17.   DOI   ScienceOn
12 Norman, M. A., Evans, C. E., Fuoco, A. R., Noble, R. D. and Koval, C. A., 2005, "Characterization of a Membrane-Based, Electrochemically Driven Pumping System Using Aqueous Electrolyte Solutions," Analytical Chemistry, Vol. 77, No.19, pp. 6374-6380.   DOI   ScienceOn
13 Jiang, L., Mikkelsen, J., Koo J. M., Huber, D., Yao, S., Zhang, L., Zhou, P., Maverty, J. G., Prasher, R., Santiago, J. G., Kenny, T. W. and Goodson, K. E., 2002, "Closed-Loop Electroosmotic Microchannel Cooling System for VLSI Circuits," IEEE Transactions on Components and Packaging Technologies, Vol. 25, No. 3, pp. 347-354.   DOI   ScienceOn
14 Laser, D. J. and Santiago, J. G., 2004, "A Review of Micropumps," Journal of Micromechanics and Microengineering, Vol. 14, No. 6, pp. R35-R64.   DOI   ScienceOn
15 Buie, C. R., Kim, D., Liester, S. and Santiago, J. G., 2007, "An Electro-Osmotic Fuel Pump for Direct Methanol Fuel Cells," Electro Chemical and Solid- State Letters, Vol. 10, No. 11, pp. B196-B200.   DOI   ScienceOn
16 Kwon, K. and Kim, D., 2010, "Air Pumps for Polymer Electrolyte Membrane Fuel Cells," Transactions of the KSME (B), Vol. 34, No. 7, pp. 715-720.
17 Litster, S., Suss, M. E. and Santiago, J. G., 2010, "A Two-Liquid Electroosmotic Pump Using Low Applied Voltage and Power," Sensors and Actuators A: Physics, Vol. 163, No. 1, pp. 311-314.   DOI   ScienceOn
18 Yao, S., Hertzog, D. E., Zeng, S. and Santiago, J. G., 2003, "Porous Glass Electroosmotic Pumps: Design and Experiments," Journal of Colloid and Interface Science, Vol. 268, No. 1, pp. 143-153.   DOI   ScienceOn
19 Kim, D., Posner J. D. and Santiago, J. G., 2008, "High Flow Rate per Power Electroosmotic Pumping Using Low Ion Density Solvents," Sensors and Actuators A: Physics, Vol. 141, No. 1, pp. 201-212.   DOI   ScienceOn
20 Kwon, K. and Kim, D., 2011, "Characterization of Electroosmotic Pumps Using Methanol/Water Mixtures with Various Compositions," Sensors and Actuators A: Physics, Vol. 166, No. 1, pp. 88-93   DOI   ScienceOn