• Title/Summary/Keyword: Excavator performance

Search Result 86, Processing Time 0.027 seconds

A Study on Tracking Control of Remote Operated Excavator for Field Robot (필드로봇용 원격 굴삭 시스템의 궤적제어에 관한 연구)

  • Yang, S.S.;Jin, S.M.;Choi, J.J.;Lee, C.D.;Kim, Y.S.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.6 no.4
    • /
    • pp.9-15
    • /
    • 2009
  • Hydraulic excavators are the representative of field robot and have been used in various fields of construction. Since the excavator operates in the hazardous working environment, operators of excavator are exposed in harmful environment. Therefore, the hydraulic excavator automation and remote operation system has been investigated to protect from the hazardous working environment. In this paper, remote operation excavator system is developed using the mini hydraulic excavator and the tracking control system of each links of excavator is designed. To apply the tracking control system, the adaptive sliding mode control algorithm is proposed. It is found that the performance of the proposed control system is improved through experimental results of using the remote operation excavator system.

  • PDF

Kinematic optimal design and analysis of kinematic/dynamic performances of a 3 degree-of-freedom excavator subsystem (3 자유도 굴착기 부속 시스템의 기구학적 최적 설계와 기구학/동력학 성능 해석)

  • Kim, Whee-Kuk;Han, Dong-Young;Yi, Byung-Ju
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.3 no.4
    • /
    • pp.422-434
    • /
    • 1997
  • In this paper, a two-stage kinematic optimal design for a 3 degree of-freedom (DOF) excavator subsystem, which consists of boom, arm and bucket, is performed. The objective of the first stage is to find the optimal parameters of the joint-actuating mechanisms which maximize the force-torque transmission ratio between the hydraulic actuator and the rotating joint. The objective of the second stage is to find the optimal link parameters which maximize the isotropic characteristic of the excavator subsystem throughout the workspace. It is illustrated that kinematic/dynamic performances of the kinematically optimized excavator subsystem have improved compared to those of original HE280 excavator, with respect to three performance indices such as maximum load handling capacity, maximum velocity capability, and acceleration capability.

  • PDF

Position Control of the Pneumatic Excavator System Using Adaptive Sliding Mode Controller (적응슬라이딩 모드 제어기를 이용한 공압굴삭기 시스템의 위치 제어)

  • Lim, Tae-Hyeong;Cheon, Se-Young;Yang, Soon-Yong;Choi, Jeong-Ju
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.12
    • /
    • pp.82-87
    • /
    • 2007
  • Excavator has been used in wide field since the attachment in the end effect can be changeable according to the purpose of working. However, efficiency of work using excavator mainly depends on an operator's ability. For the purpose of improving the efficiency of work and reducing the fatigue of operator, the automatic excavator system has been researched. In this paper, the tracking control system of each links of excavator is designed before developing the automatic excavator system. In order to apply the tracking control system, the pneumatic excavator system is developed and the tracking control system is applied. For designing the tracking control system, the adaptive sliding mode control algorithm is proposed. The performance of the proposed control system is evaluated through experiments using the pneumatic excavator system.

Performance Analysis of Earth Work Using Excavator in the Case of Forest Road Construction (임도공사시(林道工事時) 굴삭기(掘削機)를 이용(利用)한 토공작업(土工作業)의 공정분석(工程分析))

  • Lee, Joon Woo;Park, Bum-Jin
    • Journal of Korean Society of Forest Science
    • /
    • v.87 no.1
    • /
    • pp.82-89
    • /
    • 1998
  • This study was carried out to investigate working time, performance, and to predict performance that related to the factor of forest road in earth work using excavator. It was found that the real working time was 503 minutes in a day. The ratio of real working time and allowance per total working time was approximately 85.7% and 14.3% individually. The rate of soil movement(Sm) to net working time was 38.6%, and earth cutting(Ec) was 32.5%. According to performance analysis, performance of earth work using excavator($0.8m^3$) in straight part was 1.4 times larger than curve part and rock work using excavator($0.8m^3$) which had breaker in straight was 9.1 times larger than earth work using excavator($0.8m^3$) which had bucket. Performance of earth work using excavator($1.0m^3$) was 1.3 times larger than using excavator($0.8m^3$) in straight and curve part. Working performance in earth work using excavator($0.8m^3$) was influenced by the conditions of radius of curve, width of roadway, slope gradient. It is not influenced by diameter and number of root stock.

  • PDF

Kinematic Optimal Design of Excavator with Performance Analysis (굴삭기의 기구학적 최적설계와 성능해석)

  • 한동영;김희국;이병주
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.617-622
    • /
    • 1994
  • In this paper, we perform a two-stage, kinematic optimal design for 3 degree-of-freedom excavator system which consists of boom, arm, and bucket. The objective of the first stage is to find the optimal joint parameters which maximize the force-torque transmission ratio between the hydraulic actuator and the rotating joint. The objective of the first stage is to find the optimal link parameters which maximize the isotropic characteristic throughout the workspace. It is illustrated that performances of the optimized excavator are improved compared to those of HE280 excavator, with respect to the described performace index and maximum load handling capacity.

  • PDF

Design of Simulator for the Excavator (굴삭기 시뮬레이터의 설계)

  • Kim, D.S.;Bae, S.K.;Kim, J.S.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.3 no.3
    • /
    • pp.14-19
    • /
    • 2006
  • Recently, the cylinder of the excavator is applied in the various environment. So, we need the development of the simulator for the excavator. The simulator has the effects of the decrease of the cost and improvement of the cylinder's performance. In this paper, we design the simulator for the excavator and makes an analysis of the dynamics and structure. The simulator was applied to the excavator's models of 10ton, 20ton and 30ton because we built the data base of a real excavator's cylinder of information in the experiment. And we used the FEM analysis for the comparative study on the characteristics.

  • PDF

A constant angle excavation control of excavator's attachment using neural network (신경 회로망을 이용한 유압 굴삭기의 일정각 굴삭 제어)

  • 서삼준;서호준;김동식
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.151-155
    • /
    • 1996
  • To automate an excavator the control issues resulting from environmental uncertainties must be solved. In particular the interactions between the excavation tool and the excavation environment are dynamic, unstructured and complex. In addition, operating modes of an excavator depend on working conditions, which makes it difficult to derive the exact mathematical model of excavator. Even after the exact mathematical model is established, it is difficult to design of a controller because the system equations are highly nonlinear and the state variable are coupled. The objective of this study is to design a multi-layer neural network which controls the position of excavator's attachment. In this paper, a dynamic controller has been developed based on an error back-propagation(BP) neural network. Computer simulation results demonstrate such powerful characteristics of the proposed controller as adaptation to changing environment, robustness to disturbance and performance improvement with the on-line learning in the position control of excavator attachment.

  • PDF

Development of Hybrid Excavator for Regeneration of Boom Potential Energy (작업장치 위치에너지 회생을 위한 하이브리드 굴삭기 시스템 개발)

  • Yoon, J.I.;Ahn, K.K.;Truong, D.Q.;Kang, J.M.;Kim, J.H.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.6 no.4
    • /
    • pp.1-8
    • /
    • 2009
  • Nowadays with the high fuel prices, the demands for energy saving and green emission of construction machinery have highly been increased without sacrifice of working performance, safety and reliability. The aim of this paper is to propose a new energy saving hybrid excavator system using an electro-hydraulic actuator driven by an electric motor/generator for the regeneration of potential energy. A 5 ton class excavator is analyzed, developed with the boom for the evaluation of the designed system. The hardware implementation is also presented in this paper. A control strategy for the hybrid excavator is proposed to operate the machine with a highest efficiency. The energy saving ability of the proposed excavator is clearly verified through simulation and experimental results in comparison with a conventional hydraulic excavator.

  • PDF

Design of a Teleoperation System for Hydraulic Excavator using Force Feedback Control (형궤환 제어를 이용한 유압 굴삭기의 원격 조종 시스템 개발)

  • Seo, Sam-Jun;Kim, Dong-Sik;Park, Gwi-Tae
    • Proceedings of the KIEE Conference
    • /
    • 1999.07g
    • /
    • pp.3054-3056
    • /
    • 1999
  • There have been numerous risks for excavator operator in working space. To overcome these riske, many researchers have been studied automation of excavator system. In these studies, excavator system is introduced by many researchers based on master-slave force feedback system. In this paper, a remote manipulation excavator is introduced based on force feedback. The proposed remote manipulation excavator system can give a feeling that the operator maneuvers the object directly, resulting in improved reality and efficiency. To demonstrate its performance, experiments are carried out on a test bed which is built around a commercial Hyundai HX-60W hydraulic excavator.

  • PDF

Dynamic Model Development and Simulation of Crawler Type Excavator (크롤러형 굴삭기의 동역학적 모델 개발 및 시뮬레이션)

  • Kwon, Soon-Ki
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.18 no.6
    • /
    • pp.642-651
    • /
    • 2009
  • The history of excavator design is not long enough which still causes most of the design considerations to be focused on static analysis or simple functional improvement based on static analysis. However, the real forces experiencing on each component of excavator are highly transient and impulsive. Therefore, the prediction and the evaluation of the movement of the excavator by dynamic load in the early design stage through the dynamic transient analysis of the excavator and ensuring of design technique plays an importance role to reduce development-cost, shorten product-deliver, decrease vehicle-weight and optimize the system design. In this paper, Commercial software DADS and ANSYS help to develop the track model of the crawler type excavator, and to evaluate the performance and the dynamic characteristics of excavator with various simulations. For that reason, the track of crawler type excavator is modelled with DADS Track Vehicle Superelement, and the reaction forces on the track rollers were predicted through the driving simulation. Also, the upper frame and cabin vibration characteristics, at the low RPM idle state, were evaluated with engine rigid body modelling. And flexibility body effects were considered to determine the more accurate joint reaction forces and accelerations under the upper frame swing motion.

  • PDF