• Title/Summary/Keyword: Excavator Control

Search Result 192, Processing Time 0.026 seconds

A Study on Manually and Continuously Variable Impact Force Control Device Development for Hydraulic Breakers (유압브레이커의 수동 무단 타격력 제어기구 개발에 대한 연구)

  • Kang, Young Ky;Jang, Ju Seop
    • Journal of Drive and Control
    • /
    • v.17 no.4
    • /
    • pp.46-53
    • /
    • 2020
  • In this paper, the development of a manually and continuously variable impact force control mechanism for hydraulic breakers was studied. Generally, a hydraulic breaker has one or two piston strokes. Hydraulic breakers, which have two strokes, have two valve-switching ports and make short and long piston strokes. The piston stroke valve controls the piston stroke by opening and closing a short stroke-switching port. The short piston stroke mode is used to break soft rock, concrete, or asphalt. This stroke control valve system is not popular for small hydraulic breakers mounted on 1 to 14-ton excavators. To preserve the carrier-like excavator, proper breaking force is needed, and it can be easily controlled by multiple piston stroke control valves. The easiest way to control these breakers is to use several switching ports and valves but they are not easy to install in small hydraulic breakers and are expensive. To use only one switching port and valve, a method can be used to change the open area of the switching port to delay valve switching. This method provides multiple piston strokes.

Basic Design for Development of IMV for MCV (MCV용 IMV개발을 위한 기초설계)

  • Huh, Junyoung;Jung, Gyu Hong
    • Journal of Drive and Control
    • /
    • v.15 no.3
    • /
    • pp.49-56
    • /
    • 2018
  • Construction machinery is used to improve productivity in civil engineering work and construction work, and it is a lengthy operation, and consumes considerable fuel to cope with large loads. As a result, productivity and fuel consumption of the construction machine become the main deciding factors. In the hydraulic system of the excavator, the main control valve is the most critical position for control. The flow distribution for control performance is achieved by the metering orifice, that causes critical energy loss. To improve this, we propose a combination of a three port proportional pressure reducing valve and a poppet type flow control valve as an IMV to replace the existing spool type MCV. To validate the proposal, we analyze static characteristics by modeling mathematically, and analyze dynamic characteristics. Simulation using the AMESim software on the regeneration circuit of the boom cylinder up-down operation, verifies the energy-saving effect compared to the existing MCV when IMV is used.

Parameter design of an hydraulic track motor system

  • Um, Taijoon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10b
    • /
    • pp.208-211
    • /
    • 1993
  • This paper presents the parameter design method for the desired time response of hydraulic track motor system of an industrial excavator. The dynamic response depends upon many component parameters such as motor displacement, spring constant and various valve coefficients. Most of them are to be determined to obtain the desired response while some parameters are fixed, or discrete for the off-the-shelf type components. The parameters might be selected through repeated simulations of the system once the system is mathematically represented. This paper, however, presents optimization technique to select two parameters using a parameter optimization technique. The variational approach is applied to the system equations which are represented as state equations and from those system equations derived are the adjoint equations. The gradients for each parameter also are formed for the iterations.

  • PDF

Energy Saving in Boom Motion of Excavators using IMV (IMV를 사용한 유압굴삭기 붐 동작의 에너지 절감)

  • Huh, Jun Young
    • Journal of Drive and Control
    • /
    • v.14 no.3
    • /
    • pp.1-7
    • /
    • 2017
  • Energy consumption of conventional hydraulic excavators controlled by MCV is considerable when negative load is applied because the meter orifice and meter-out orifice are machined in one spool. Therefore, IMV is introduced to save energy use of hydraulic excavators, but existing hydraulic excavators have various advantages so it is difficult to make a clear comparison. In this study, we compare the use of an existing MCV excavator that has many advantages such as negative control, and IMV for boom up and down operation, and if IMV is used to save energy, we will examine the cause. If possible, for comparability under the same conditions, both systems use pressure balance valves to minimize power consumption when not using power in the actuator. The orifice area at each notch of each valve is calculated, and energy saving is verified by comparing the two systems through simulation.

Development of Small Crane Control System to Improve Fishery Operations (어장작업 개선을 위한 소형 크레인 조작제어장치 개발)

  • Jeong, Heon;Lee, Sang-Woong
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.9 no.5
    • /
    • pp.625-632
    • /
    • 2014
  • It is required a lot of strength in aquaculture, such as dragging up or moving heavy loads. So, a helper system like excavator at construction is need for fishermen. As most of HFMSC(Hydraulic Fishery Managing Small Crane)s are operated based on ON/OFF control, it can make sway the contents in the crane. In worse case, it could threaten workers. In this paper, we development the MICOM based controller which can reduce the swing sway. This paper describes the hydraulic characteristics, the design method of controller and the control algorithms. And, the proposed controller show the efficiency to carry out the experimental validation.

Transparent Manipulators Accomplished with RGB-D Sensor, AR Marker, and Color Correction Algorithm (RGB-D 센서, AR 마커, 색수정 알고리즘을 활용한 매니퓰레이터 투명화)

  • Kim, Dong Yeop;Kim, Young Jee;Son, Hyunsik;Hwang, Jung-Hoon
    • The Journal of Korea Robotics Society
    • /
    • v.15 no.3
    • /
    • pp.293-300
    • /
    • 2020
  • The purpose of our sensor system is to transparentize the large hydraulic manipulators of a six-ton dual arm excavator from the operator camera view. Almost 40% of the camera view is blocked by the manipulators. In other words, the operator loses 40% of visual information which might be useful for many manipulator control scenarios such as clearing debris on a disaster site. The proposed method is based on a 3D reconstruction technology. By overlaying the camera image from front top of the cabin with the point cloud data from RGB-D (red, green, blue and depth) cameras placed at the outer side of each manipulator, the manipulator-free camera image can be obtained. Two additional algorithms are proposed to further enhance the productivity of dual arm excavators. First, a color correction algorithm is proposed to cope with the different color distribution of the RGB and RGB-D sensors used on the system. Also, the edge overlay algorithm is proposed. Although the manipulators often limit the operator's view, the visual feedback of the manipulator's configurations or states may be useful to the operator. Thus, the overlay algorithm is proposed to show the edge of the manipulators on the camera image. The experimental results show that the proposed transparentization algorithm helps the operator get information about the environment and objects around the excavator.

A Study on Calculation of Air Pollutants Emission Factors for Construction Equipment (건설기게의 대기오염물질 배출계수 산정을 위한 연구)

  • lim, Jae-Hyun;Jung, Sung-Woon;Lee, Tae-Woo;Kim, Jong-Choon;Seo, Chung-Youl;Ryu, Jung-Ho;Hwang, Jin-Woo;Kim, Sun-Moon;Eom, Dong-Sup
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.25 no.3
    • /
    • pp.188-195
    • /
    • 2009
  • Generally. mobile sources of air pollution were classified in on-road and non-road. Due to increased registration number of construction equipment in Korea. updated emission factors for non-road mobile sources, such as construction machinery. should be developed. NONROAD model of U.S. EPA already has introduced transient adjustment factors and sulfur adjustment factors for emission factors of diesel powered engine. In addition to this. European Environment Agency (EEA) has proposed emission factors for off-road machinery including several types of construction equipment. In this study. six types of construction equipment, such as excavator. forklift, loader, crane, roller and bulldozer, were studied to estimate emission factors based on total registration status in Korea. Total 445 construction equipments between 2004 and 2007 model year were tested with KC1-8 mode and air pollutants (CO, THC, $NO_x$, and PM) were measured. After statistical estimation and calculation, emission factors for CO, THC, $NO_x$, and PM for excavator, forklift, loader, crane, roller and bulldozer were provided and compared with previous emission factors. Moreover, updated emission factors for six types of construction equipment in this study were verified after comparison with emission factors of U.S. EPA. Finally, estimated emission amounts of four air pollutants were suggested according to six types of construction equipment.

Simulation Analysis for the Development of 3 Stage IMV (양방향 3단 IMV 개발을 위한 시뮬레이션 해석)

  • Huh, Jun Young
    • Journal of Drive and Control
    • /
    • v.17 no.2
    • /
    • pp.55-62
    • /
    • 2020
  • There are two types of IMV for MCV, the spool type and the poppet type. The spool type is used in the existing excavator MCV and easily meets large-capacity flow conditions, but has a flow force problem which affects the spool control. The poppet type stably blocks the flow and has excellent rapid response. However, the larger the capacity, the larger the diameter of the poppet needed, requiring a strong spring to withstand the oil pressure. In this study, a bi-directional three-stage IMV for MCV that can be used in medium and large hydraulic excavators was proposed. This is a poppet type, enabling bi-directional flow control and resolves the problem of proportional solenoid suction force limitation. To investigate the validity of the proposed valve, the system was mathematically modeled and the static and dynamic characteristics were investigated through the simulation using commercial software. It has been concluded that the reverse flow is possible in a regeneration circuit and that the proposed IMV can be used to perform various excavation modes.

A STUDY OF THE EFFECTS OF AUCUBIN ON THE PULP TISSUE AFTER PULPOTOMY IN DOGS (치수절단 후 Aucubin이 잔존치수조직에 미치는 영향에 관한 연구)

  • Baek, Seung-Ho;Lee, Sung-Woo
    • Restorative Dentistry and Endodontics
    • /
    • v.24 no.4
    • /
    • pp.554-559
    • /
    • 1999
  • Aucubin, an iridoid glucoside isolated from Aucuba japonica, has pharmacological effects such as antimicrobial effect, liver protective function and inhibition of liver RNA and protein biosynthesis, etc. This study was performed to observe the effect of aucubin on the pulp tissue after pulpotomy. Aucubin was converted to aucubinogenin as an active form by ${\beta}$-glucosidase. In 3 Mongrel dogs, the pulps were mechanically exposed with a sterile round bur and excised with sterile excavator. After bleeding control, aucubin was applied on remaining pulp tissues and then they were sealed with IRM in experimental group. In control group, $Ca(OH)_2$ powder was applied on remaining pulp tissues and then they were sealed with IRM. After interval of 1 and 12 weeks, the dogs were sacrificed. The teeth were prepared for histologic evaluation and examined by light microscope. Aucubin 1 week group showed that mild inflammation and vascular congestion in most of the specimen. More various degree of inflammation was found in experimental group than in control group. Premature calcified mass were found in the both 1 weeks groups. Continuous well-formed dentin bridge was found in both 12 weeks groups. Collectively, this study suggests that the possibility of aucubin as a medicament after pulpotomy.

  • PDF

Dynamic Characteristics of Electro-hydraulic Proportional Valve for an Independent Metering Valve of Excavator (굴삭기 IMV용 비례전자밸브의 동특성)

  • Kang, Chang Nam;Yun, So Nam;Jeong, Hwang Hoon;Kim, Moon Gon
    • Journal of Drive and Control
    • /
    • v.15 no.2
    • /
    • pp.46-51
    • /
    • 2018
  • Many research studies have been carried out related to saving energy and environmental pollution in the field of construction machinery. The best solution for reducing the related environmental pollution is to reduce fuel consumption by upgrading the energy efficiency of machinery used in this field. An efficiency upgrade in the field of construction machinery would mean minimizing the pressure loss in hydraulic pipe lines or achieving optimal operating conditions while responding to a load. One way to achieve this is to make an equivalent circuit, like an electrohydrostatic actuator, or to improve the spool type valve using the 4/3 way method. This study deals with an electrohydraulic proportional flow control valve. SimulationX software is used as a simulation tool for analyzing the dynamic characteristics. The analysis results, including the performance and characteristics of design parameters, are discussed and the validity of the theoretical analysis is also evaluated.