• Title/Summary/Keyword: Excavation width

Search Result 111, Processing Time 0.033 seconds

Load-transfer mechanism in the ground with discontinuity planes during tunnel excavation (불연속면이 존재하는 지반에서 터널굴착에 의한 하중전이)

  • Lee, Sang-Duk;Byun, Gwang-Wook;Yoo, Kun-Sun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.4 no.1
    • /
    • pp.71-78
    • /
    • 2002
  • In this study, the influence of the presence of discontinuity planes on the load transfer mechanism and the pattern of loosening zone was studied based on the laboratory test. The trap-door and the reaction plates are installed as the bottom plane of the model box. The vertical discontinuity plane is installed in the dry sand. Various overburden heights and locations of discontinuity planes are applied as major factors in this study. The results show that at higher overburden heights over about 1.5 times the excavation width, the ratio of the transferred stress to the insitu stress converges to a certain value even if the overburden height increases further. The results also show that the discontinuity plane gives relatively larger influence on the load transfer mechanism, that produces the unsymmetrical load concentration, when the discontinuity plane locates within the tunnel width. When the discontinuity plane locates outside the tunnel width, the unsymmetrical load concentration is reduced considerably.

  • PDF

Analytical solutions for crack initiation on floor-strata interface during mining

  • Zhao, Chongbin
    • Geomechanics and Engineering
    • /
    • v.8 no.2
    • /
    • pp.237-255
    • /
    • 2015
  • From the related engineering principles, analytical solutions for horizontal crack initiation and propagation on a coal panel floor-underlying strata interface due to coal panel excavation are derived in this paper. Two important concepts, namely the critical panel width of horizontal crack initiation on the panel floor-underlying strata interface and the critical panel width of vertical fracture (crack) initiation in the panel floor, have been presented. The resulting analytical solution indicates that: (1) the first criterion can be used to express the condition under which horizontal plane cracks (on the panel floor-underlying strata interface or in the panel floor because of delamination) due to the mining induced vertical stress will initiate and propagate; (2) the second criterion can be used to express the condition under which vertical plane cracks (in the panel floor) due to the mining induced horizontal stress will initiate and propagate; (3) this orthogonal set of horizontal and vertical plane cracks, once formed, will provide the necessary weak network for the flow of gas to inrush into the panel. Two characteristic equations are given to quantitatively estimate both the critical panel width of vertical fracture initiation in the panel floor and the critical panel width of horizontal crack initiation on the interface between the panel floor and its underlying strata. The significance of this study is to provide not only some theoretical bases for understanding the fundamental mechanism of a longwall floor gas inrush problem but also a benchmark solution for verifying any numerical methods that are used to deal with this kind of gas inrush problem.

Derivation of a 3D Arching Formula for Tunnel Excavation in Anisotropic Ground Conditions and Examination of Its Effects (비등방 지반에서 터널굴착을 위한 3차원 아칭식의 유도 및 그 영향 조사)

  • Son, Moorak
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.12
    • /
    • pp.19-27
    • /
    • 2018
  • Terzaghi proposed a 2D formula for arching based on the assumption of a vertical sliding surface induced in the upper part due to the downward movement of a trapdoor. The formula was later expanded to consider 3D tunnel excavation conditions under inclined sliding surfaces. This study further extends the expanded formula to consider the effects of different ground properties and inclined sliding conditions in the transverse and longitudinal directions considering anisotropic ground conditions, as well as 3D tunnel excavation conditions. The 3D formula proposed in this study was examined of the induced vertical stress under various conditions (ground property, inclined sliding surface, excavation condition, surcharge pressure, earth pressure coefficient) and compared with the 2D Terzaghi formula. The examination indicated that the induced vertical stress increased as the excavation width and length increased, the inclination angle increased, the cohesion and friction angle decreased, the earth pressure coefficient decreased, and the surcharge pressure increased. Under the conditions examined, the stress was more affected at low excavation lengths and by the ground properties in the transverse direction. In addition, The comparison with the 2D Terzaghi formula showed that the induced vertical stress was lower and the difference was highly affected by the ground properties, inclined sliding conditions, and 3D tunnel excavation conditions. The proposed 3D arching formula could help to provide better understanding of complex arching phenomena in tunnel construction.

Considerable Parameters and Progressive Failure of Rock Masses due to the Tunnel Excavation (터널 굴착시 고려해야 할 주변앙반의 매개변수와 진행성 파괴)

  • 임수빈;이성민
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1994.09a
    • /
    • pp.231-234
    • /
    • 1994
  • Concentrated stresses due to the tunnel excavation easily cause failure around opening in the soft rock mass layer. Thus, while excavatng tunnel in the soft rock mass layerm it is very important to predict the possibility of failure or yielding zones around tunnel boundary. There are two typical methods to predict these; 1) the analysis of field monioring data and 2) numerical analysis. In this study, it was attempted to describe the time-dependent or progressive rock mass manner due to the continuous failure and fracturing caused by surrounding underground openings using the second method. In order to apply the effects of progressive failure underground, an iterative technique was used with the Hoek and Brown rock mass failure theory. By developing and simulating, three different shapes of twin tunnels, this research simulated and estimated the proper size of critical pillar width between tunnels, distributed stresses on the tunnel sides, and convergences of tunnel crowns. Moreover, results out progressive failure technique based on the Hoek and Brown theory were compared with the results out of Mohr-Coulomb theory.

  • PDF

The first application of vertical snake in 345kV XLPE $2,500mm^2$ (345kV XLPE $2,500mm^2$ 수직스네이크 최초적용)

  • Oh, Chang-Hyo;Yoon, Hyung-Hee;Lee, Koan-Seong;Paik, Nam-Yeol;Kim, Soo-Hwan
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.568-569
    • /
    • 2011
  • As an answer for need for minimizing the road excavation of a box type tunnel, a method of vertical snake was developed, which is very economical and easy to construct. The reason why it is good is, the road excavation width, steel accessories, the road occupation space decreases with the technology. The pros and cons of 345kV XLPE $2,500mm^2$ horizontal and vertical snake are listed below. In this study, topics such as 345kV XLPE $2,500mm^2$ vertical snake construction standard and the development process of steel accessories, vertical snake construction procedure will be covered.

  • PDF

A Study of Stability Analysis for Tunnelling in Fault Zone (단층대 터널굴착시 안정성 확보에 관한 연구)

  • Hong, Chang-Soo;Hwang, Dae-Jin;Lee, Kang-Ho;Lee, Yong-Hun;Lee, Chang-Won
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.1275-1282
    • /
    • 2005
  • This paper deals with the numerical study for excavation crossing the fault zone and the change of support pattern in field. The numerical analyses by FLAC program were performed to evaluate the suitable support pattern influenced by the width of Fault Zone, considering rock mass condition(RMR classification). Based on the results, it is found that partial reinforcement or degrading support pattern is suitable, when the width of Fault is under 3m. But when the width of Fault is more than 6m(0.5D), extra support pattern for fault zone is acceptable. At field, this result is generally used as a guide in the construction of roadway tunnel, but it is also possible to vary this assessment along the condition of fault.

  • PDF

Predictive models of ultimate and serviceability performances for underground twin caverns

  • Zhang, Wengang;Goh, Anthony T.C.
    • Geomechanics and Engineering
    • /
    • v.10 no.2
    • /
    • pp.175-188
    • /
    • 2016
  • The construction of a new cavern modifies the state of stresses and displacements in a zone around the existing cavern. For multiple caverns, the size of this influence zone depends on the ground type, the in situ stress, the cavern span and shape, the width of the pillar separating the caverns, and the excavation sequence. Performances of underground twin caverns can be unsatisfactory as a result of either instability (collapse) or excessive displacements. These two distinct failures should be prevented in design. This study simulated the ultimate and serviceability performances of underground twin rock caverns of various sizes and shapes. The global factor of safety is used as the criterion for determining the ultimate limit state and the calculated maximum displacement around the cavern opening is adopted as the serviceability limit state criterion. Based on the results of a series of numerical simulations, simple regression models were developed for estimating the global factor of safety and the maximum displacement, respectively. It was proposed that a proper pillar width can be determined based on the threshold influence factor value. In addition, design charts with regard to the selection of the pillar width for underground twin rock caverns under similar ground conditions were also developed.

Stability Analysis of Vertical Pipeline Subjected to Underground Excavation (지하공간 굴착에 따른 수직파이프 구조물의 안정성해석)

  • 김종우
    • Tunnel and Underground Space
    • /
    • v.10 no.4
    • /
    • pp.533-543
    • /
    • 2000
  • Deformation behavior and stability of vertical pipeline subjected to underground excavation have been studied by means of numerical analysis. Vortical ground displacements cause the pipe to be compressed, while horizontal ones cause it to be bent. In that region the vertical pipeline meets with the induced compressive stress and bending stress. In addition horizontal rock stress subjected to underground excavation may press the tube in its radial direction and it finally produces the tangential stress of pipe. In this study active gas well system is considered as an example of vertical pipelines. Factor analysis has been conducted which has great influence on the pipeline behavior. Three case studies are investigated which have the different pillar widths and gas well locations in pillar. For example, where overburden depth is 237.5 m and thickness of coal seam is 2.5 m, chain pillar of 45.8 m width in the 3-entry longwall system is proved to maintain safely the outer casing of gas welt which is made of API-55 steel, 10$\frac{3}{4}$ in. diameter and 0.4 in. thickness. Finally an active gas well which was broken by longwall mining is analyzed, where the induced shear stress turn out to exceed the allowable stress of steel.

  • PDF

Object Detection From 3D Terrain Data Gener Ated by Laser Scanner of Intelligent Excavating System(IES) (굴삭 자동화를 위한 레이저 스캐너 기반의 3차원 객체 탐지 알고리즘의 개발)

  • Yoo, Hyun-Seok;Park, Ji-Woon;Choi, Youn-Nyung;Kim, Young-Suk
    • Korean Journal of Construction Engineering and Management
    • /
    • v.12 no.6
    • /
    • pp.130-141
    • /
    • 2011
  • The intelligent excavating system(IES), the development in South Korea of which has been underway since 2006, aims for the full-scale automation of the excavation process that includes a series of tasks such as movement, excavation and loading. The core elements to ensure the quality and safety of the automated excavation equipment include 3D modeling of terrain that surrounds the excavating robot and the technology for detecting objects accurately(i.e., for detecting the location of nearby loading trucks and humans as well as of obstacles positioned on the movement paths). Therefore the purpose of this research is to ensure the quality and safety of automated excavation detecting the objects surrounding the excavating robot via a 3D laser scanning system. In this paper, an algorithm for estimating the location, height, width, and shape of objects in the 3D-realized terrain that surrounds the location of the excavator was proposed. The performance of the algorithm was verified via tests in an actual earthwork field.

Behavior of the Ground in Obliquely Crossed area Due to Tunnel Excavation Under the Existing Tunnel (기존터널에 근접하여 경사로 교차되는 하부터널굴착에 따른 교차부지반의 거동)

  • Kim, Dong-Gab;Lee, Sang-Duk
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.7 no.4
    • /
    • pp.285-294
    • /
    • 2005
  • The behaviors of the ground in crossed zone and the existing upper tunnel in shallow cover due to the excavation of new lower tunnel crossed to that was studied. Model test was performed in the large scale test pit, the size was '$4.0m(width){\times}3.8m(height){\times}4.1m(length)$'. Test ground was constructed uniformly by sand in middle density and test with the crossed angle of $56^{\circ}$ (obliquely) were performed. The numerical analysis was performed on equal condition with model test. Results of the study by model test and numerical analysis show that earth pressure and settlement of the ground in crossed zone were redistributed due to the longitudinal arching effect by the excavation of lower tunnel. Model test shows that upper tunnel blocks stress flow due to the longitudinal arching effect by excavation of lower tunnel.

  • PDF