• Title/Summary/Keyword: Excavation Works

Search Result 128, Processing Time 0.028 seconds

Improvement of river environment in the downstream reaches of dams (댐하류의 하천환경 개선)

  • Ozawa, Takashi
    • Proceedings of the Korean Society of Environment and Ecology Conference
    • /
    • 2003.10a
    • /
    • pp.1-21
    • /
    • 2003
  • I introduce the Flexible Dam Operation (FDO) and some of sediment control techniques In dams which are implemented as trials to avoid or reduce environmental impact of dams on the downstream reaches. The FDO is a dam management method to improve river environment in the downstream reaches by means of the flushing flow, the maintenance flow and so on utilizing a vacant portion of capacity for flood control without interrupting prime flood control function during the rainy/typhoon season. It Is suggested by the guideline of the FDO that EDO should be implemented regularly after the trial for about three years. The basic conception of the FDO is described here. The example of excavation of deposited sediments in check dams and placement of sand ana gravel immediately downstream of the dams and the example of coordinated sediment flushing are described as some of sediment control techniques in dams. Now they are at the stage of experiment and trial. Therefore, it is important to increase examples and establish the technical methodology and the environmental evaluation method for them.

  • PDF

The permeability charateristic of Z-type sheet pile joints under water sealing conditions (Z형 강널말뚝의 오염물질 차단효과)

  • Hong, Seung-Seo;Lee, Yong-Soo;Chung, Ha-Ik
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.1283-1288
    • /
    • 2009
  • In general steel sheet piles are used in the containment system, which are vertical barrier systems for waste disposal and landfill purposes, and roads in excavation for temporary structure. This paper presents case study of the use of an interlocking sheet pile for water and containment. Cut-off Z-type sheet pile joints are investigated to determine their permeability from the field test. Four different joint sealing materials are used in field test. The results showed joint permeability is significant time-dependent and joint-dependent. These are explored and conclusions on permeability characteristics of different sealants are noted. A case study gives a design example as well as suggestion on permeability and water tightness can be implemented in using the sheet pile barrier in civil and environment works. From the test results, the effective sealing programs of sheet pile interlocks are suggested.

  • PDF

Excavation and Restoration of the Sangchon-ri Dinosaurs Track fossils (진주 상촌리 공룡발자국 화석의 발굴과 복원)

  • 서승조;임성규;박강은
    • Journal of Environmental Science International
    • /
    • v.12 no.9
    • /
    • pp.905-910
    • /
    • 2003
  • The valuable fossils are distributed in Korean peninsula. In consequence of the development of inland, many road constructions and other public works have been carried out. As a matter of course, lots of paleontological materials in Kyongsang basin were destroyed. Fortunately, one of them was rescued and restored in a suitable place by authors. A fine 4×5 m sandstone slab having about 40 dinosaur tracks was brought from Sangchon-ri, Jinju city, and restored at Danghangpo, Goseong County, Gyeongsangnam-do Province. This fossil bearing slab suggests dinosaurs' ecology and paleo-environment during the early Cretaceous Period of Kyongsang basin.

Soft Sedimentary Rock Slopes Design of Diversion Tunnel

  • Jee, Warren Wangryul
    • Proceedings of the Korean Society for Rock Mechanics Conference
    • /
    • 2007.10a
    • /
    • pp.63-79
    • /
    • 2007
  • Several remedial works were attempted to stabilize the collapsed area of the inlet slopes of diversion tunnel, but prevention of any further movement was being only carried out at beginning stage by filling the area with aggregates and rock debris, after several cracks had been initiated and developed around the area. The extra specialty developed folding zone is consisted with highly weathered Greywacke and Black shale. The suggested solution is to improve the properties of the rock mass of failed area by choosing the optimum level of reinforcement through the increment of slope rock support design so as to control the movement of slopes during the re-excavation. The Bakun hydroelectric project includes the construction of a hydroelectric power plant with an installed capacity of 2,520MW and a power transmission system connecting to the existing transmission networks in Sarawak and Western Malaysia. The power station will consist of a 210m height Concrete Faced Rockfill Dam. During the construction of the dam and the power facilities the Balui River has to be diverted of the tunnels is 12m and the tunnel width is 16m at the portal area. This paper describes the stability analysis and design methods for the open cut rock slopes in the inlet area of the diversion tunnels. The geotechnical parameters employed in stability calculations were given as a function of four defined Rock Mass Type (RMT) which were based on RMR system from Bieniawski. The stability calculations procedure of the rock slopes are divided into two stages. In the first stage, it is calculated for the stability of each "global" slope without any rock support and shotcrete system. In the second stage, it is calculated for each "local" slope stability with berms and supported with rock bolts and shotcrete. The monitoring instrumentation was performed continuously and some of the design modification was carried out in order to increase the safety of failed area based on the unforeseen geological risks during the open cut excavation.

  • PDF

A Case Study of Blasting with Electronic Detonator (전자뇌관을 활용한 발파 시공 사례)

  • Hwang, Nam-Sun;Lee, Dong-Hoon;Lee, Seung-Jae
    • Explosives and Blasting
    • /
    • v.34 no.4
    • /
    • pp.40-45
    • /
    • 2016
  • Sites, where explosives are used, are constantly under constraint of vibration and noise levels. If a sensitive area is located nearby the sites, mechanical excavation has been preferred rather than blasting. Recently, however, blasting using electronic detonators is applicable in the areas, where previously should be excavated by mechanical methods. $HiTRONIC^{TM}$ is a fourth-generation detonator that utilizes Hanwha Corporation's advanced electronic technology. The detonator contains IC-Chip, which allows delay times between 0~15,000ms with 1ms interval. Furthermore, the product can provide high accuracy(0.01%) for accurate-blasting. Electronic detonator is widely used in highway and railway construction sites, large limestone quarries, and other works. In this paper, several sites, in which HiTRONIC was used, are introduced in order to enhance understanding of electronic detonator.

A fundamental study of slurry management for slurry shield TBM by sea water influence (해수의 영향에 따른 이수식 TBM의 슬러리 관리를 위한 기초적 연구)

  • Kim, Dae-Young;Lee, Jae-won;Jung, Jae-Hoon;Kang, Han-Byul;Jee, Sung-Hyun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.3
    • /
    • pp.463-473
    • /
    • 2017
  • Bentonite swells when it comes into contact with water and makes it a viscous fluid. Thus it is widely used in civil engineering works for waterproofing. Utilizing the properties of bentonite, the slurry shield TBM supports excavated face with pressurized slurry as well as transporting excavated muck. When bentonite is in contact with seawater, due to the change of double layer thickness, its expandability and viscosity are lowered. This may cause problems for excavation stability and muck discharge due to the increase of sea water inflow when Slurry TBM is used under sea water conditions. In this study, the change of slurry condition caused by the inflow of sea water during tunnel excavation with Slurry TBM was investigated and a slurry management guideline was proposed. For this purpose, a laboratory test was carried out based on the slurry management criterions applied in the field, and a method applicable to the field where sea water is affected has been proposed.

The Behavior of Sheet Piling Walls supported by Anchors in Soft Ground (연약지반에 설치된 앵커지지 강널말뚝 흙막이벽의 거동)

  • 홍원표;송영석;김동욱
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.4
    • /
    • pp.65-74
    • /
    • 2004
  • Based on the field measuring data obtained from seven excavation sections in Inchon International Airport Project, the horizontal displacement of sheet piling walls supported by anchors and the lateral earth pressure acting on sheet piling walls was investigated in soft ground. The proposed diagram of lateral earth pressure is a rectangular form, and the maximum earth pressure corresponds to $0.6\gamma H$. The maximum earth pressure is similar to the empirical earth pressure proposed by NAVFAC(1982). The quantitative safe criterion of sheet piling walls with struts is established from the relationships between increasing velocity of maximum horizontal displacement and stability number in excavated ground. If the velocity of maximum horizontal displacement shows lower than 1mm per day, the sheet piling walls exist under stable state. When the velocity of maximum horizontal displacement becomes more than 1mm and less than 2mm per day, excavation works should be observed with caution. Also, when the velocity of maximum horizontal displacement becomes more than 2mm per day, appropriate remediations and reinforcements are applied to sheet piling walls.

Analysis of Accident and Measurement Costs Resulting from Incidents in Retaining Walls (가시설 벽체 사고에 따른 복구비용 및 계측비용 분석)

  • Dong-Gun Lee;Ji-Yeol Choi;Jeong-Yeon Yu;Ki-Il Song
    • Journal of the Korean Geosynthetics Society
    • /
    • v.22 no.3
    • /
    • pp.27-35
    • /
    • 2023
  • Ensuring the stability of visible structures during excavation works are extremely crucial. While the stability of the ground is analyzed through numerical calculations the during design phase, the conditions during construction often differ. Therefore, it is imperative to analyze the stability of the wall through measurements. The cost of measurements on the construction site is set at a very low unit price, which increases the risk of accidents involving retaining walls. In this study, we argue for the importance of automated or wireless system measurements of retaining walls, by estimating construction duration and accident costs through the analysis of hypothetical accident cases, and comparing these with measurement costs. In case of a major destruction during excavation work, the accident handling cost could be less than 5% of the total measurement budget. Therefore, increasing the measurement budget to prevent accidents in advance can be economically beneficial.

Evaluation of Sleeper Supporting Condition for Railway Ballasted Track using Modal Test Technique (모달시험기법을 이용한 자갈궤도의 침목지지조건평가)

  • Jung-Youl Choi;Tae-Jung Yoon;Jee-Seung Chung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.4
    • /
    • pp.537-542
    • /
    • 2023
  • Recently, deformation of operating railway structures has occurred due to adjacent excavation works such as new structures and utility tunnel expansion concentrated around downtown areas. However, most of them are focused on structural review, repair and reinforcement of structures. A review of the Track is insufficient. In particular, in the case of the gravel track on the earthwork subgrade, the subgrade and the ballast are not solidified. A slight level of deformation can cause ballast relaxation. Sleeper support conditions may lead to unstable conditions. Sufficient safety must be ensured. In addition, it is a track type with a high risk of train derailment due to unstable support conditions. In this study, the correlation between the deformation characteristics of gravel tracks and track support performance according to subgrade deformation is experimentally and analytically verified. In addition, an evaluation technique that can evaluate the condition of the gravel track and the track support stiffness is presented.

An experimental study on early strength of shotcrete (숏크리트의 조기강도에 대한 실험적 연구)

  • Song, Yong-Su;Ryu, Jong-Hyun;Lim, Heui-Dae
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.12 no.4
    • /
    • pp.285-294
    • /
    • 2010
  • As there are increasing number of tunneling works these days, shotcrete is used as primary supports in order to secure the stability of tunnels. The quality of shotcrete has a direct influence on tunnels, because it is a primary support which secures the stability of completed tunnels as well as the stability of tunnels under excavation. Especially in case that ordinary shotcrete is used under weak rock conditions or at water gushing sections, more shotcrete is needed and rebound ratio increases. As a result, it is hard to keep economic feasibility. In addition to it, in subway construction, there are cases of separated excavation and it may have a bad influence on construction period or quality. Therefore, in this study, we are going to evaluate the early strength of powder type accelerator.