• Title/Summary/Keyword: Excavation Survey

Search Result 189, Processing Time 0.023 seconds

Case Study for the Stability of Temporary Shoring Facilities at Inchon International Airport (가시설 안정성 검토에 관한 인천국제공항 시공 사례 연구)

  • 최인걸;조현모;류승철
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.03a
    • /
    • pp.97-104
    • /
    • 1999
  • This case study has been prepared to provide the practical data about construction of temporary shoring facilities (i.e. braced sheet pile excavation) and to utilize the case study information effectively for design and construction of future facilities. This case study includes information such as 1) installing measurement devices to monitor the deformation of the sheet pile walls and the subsoil in the vicinity after establishing the criteria for the sheet pile deflection; 2) monitoring the actual movement of the temporary facility after setting up the survey control standard (due to the movement of the temporary facility) : 3) inspecting the suitability of the temporary facility construction: and 4) analyzing and studying the result of the tension test after installing ground anchors.

  • PDF

Trench Survey and Fault Displacement at Cheonbuk-myon Area along the Northern Part of Ulsan Fault System (울산단층계 북부 천북면 일대의 트렌치 조사와 단층변위)

  • 경재복
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1998.10a
    • /
    • pp.235-240
    • /
    • 1998
  • Quaternary fault movement of the Ulsan fault system was interpreted by aenal photograph, field survey and trench excavation. The geomorphological evidences associated with active fault are clearly shown at Cheonbuk-myeon area, northern part of Ulsan fault system. In the trench wall one reverse fault(N 50$^{\circ}$E, 70$^{\circ}$E) is identified between basement rock (Miocene mudstone) and gravel deposits Another thrust fault (NS) extends up to the red and light brown soil layers. Middle terrace surface shows cumulative vertical displacements of about 3 to 7 m. The horizontai displacement of the red soil by faulting event is about 1.8 to 2.4m. The age of the fault activity is younger than that of the soil layer, which is roughly estimated to be late Quaternary (about 100Ka)

  • PDF

Electrical resistivity tomography survey for prediction of anomaly in mechanized tunneling

  • Lee, Kang-Hyun;Park, Jin-Ho;Park, Jeongjun;Lee, In-Mo;Lee, Seok-Won
    • Geomechanics and Engineering
    • /
    • v.19 no.1
    • /
    • pp.93-104
    • /
    • 2019
  • Anomalies and/or fractured grounds not detected by the surface geophysical and geological survey performed during design stage may cause significant problems during tunnel excavation. Many studies on prediction methods of the ground condition ahead of the tunnel face have been conducted and applied in tunneling construction sites, such as tunnel seismic profiling and probe drilling. However, most such applications have focused on the drill and blast tunneling method. Few studies have been conducted for mechanized tunneling because of the limitation in the available space to perform prediction tests. This study aims to predict the ground condition ahead of the tunnel face in TBM tunneling by using an electrical resistivity tomography survey. It compared the characteristics of each electrode array and performed an investigation on in-situ tunnel boring machine TBM construction site environments. Numerical simulations for each electrode array were performed, to determine the proper electrode array to predict anomalies ahead of the tunnel face. The results showed that the modified dipole-dipole array is, compared to other arrays, the best for predicting the location and condition of an anomaly. As the borehole becomes longer, the measured data increase accordingly. Therefore, longer boreholes allow a more accurate prediction of the location and status of anomalies and complex grounds.

Analysis on Impact Factors of Open-cut Type Excavation Work using Numerical Analysis Method (수치해석기법을 이용한 개착식 지반굴착공사의 영향인자 분석)

  • Seong, Joo-Hyun;Kim, Yong-Soo;Shin, Byoung-Gil
    • Journal of the Korean Geosynthetics Society
    • /
    • v.12 no.3
    • /
    • pp.43-53
    • /
    • 2013
  • In this study, an analysis about the causes of different types of excavation on accidents is required in order to prevent the frequently occurring accidents related to the earth retaining structure and excavation. Also, analysis of influence was performed by using numerical typical soil conditions and construction trend using numerical analysis method. According to the analysis results of 25 accident cases, the main influence factors were found as following: insufficient of soil survey, instability of temporary facility and lack of groundwater treatment, etc. Furthermore, in the numerical analysis result of 22 cases, drainage method was occurred larger settlement than waterproof method in the Inland. In case of applying the earth anchor method, it needs more detailed in the regions, which are discovered soft ground or rock discontinuities. Also, The consolidated clay absolutely needs further consideration of excess hydrostatic pressure.

Numerical Analysis and Exploring of Ground Condition during Groundwater Drawdown Environment in Open-cut Type Excavation (개착식 굴착공사시 지하수위 저하로 인한 지반상태 탐사 및 해석기법 연구)

  • Han, Yushik
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.11
    • /
    • pp.93-105
    • /
    • 2018
  • Precise investigation and interpretation of the ground subsidence risk factors needed to predict and evaluate the settlement problems of the surrounding ground due to the ground excavation. There are various geophysical exploration methods to investigate the ground subsidence risk factors. However, there are factors that influence the characteristics of the underground medium in these geophysical methods, and the actual soil contains complex factors affecting geophysical exploration. Therefore, it is necessary to analyze the effects on the geophysical methods based on the understanding of the geotechnical properties of soil. In this study, a test bed was constructed to consider various complicated factors in the complex ground and the ground behavior was analyzed by numerical analysis. In addition, we analyzed the limitations on investigating the ground subsidence risk factors through ground penetration radar (GPR) survey. As a result, ground subsidence of Open-cut Type Excavation is caused by various factors. Especially, in the case of soft ground condition, it was found that it was greatly influenced by the flow change of groundwater level. At the center frequency of GPR of 250 MHz, the attenuation of the electromagnetic wave is severely attenuated in the clay with high electrical conductivity, making it difficult to penetrate deeply into the ground (4 m below the surface). As the electromagnetic waves pass through the groundwater level below the groundwater, the attenuation of the electromagnetic waves becomes severe.

Application of resistivity monitoring with tunnel excavation area (터널 굴착에 따른 전기비저항 모니터링 기술 적용)

  • Ahn, Hee-Yoon;Jeong, Jae-Hyeung;Cho, In-Ky;Kim, Jung-Ho;Rae, Gyu-Jin
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.10 no.4
    • /
    • pp.405-420
    • /
    • 2008
  • Resistivity survey is one of the widely used methods for the investigation of stability of the ground or bedrock around tunnel and is also used as an essential base data for stability and reduction of construction cost through first-hand approximation of rock quality at design step. Generally, the analysis of resistivity survey data is performed by single measurement. When distribution variation of groundwater around a tunnel over time is necessary for maintenance of a tunnel, resistivity monitoring is very useful survey method to grasp distribution variation of groundwater. So we performed the grid line resistivity survey to monitoring resistivity variation for six times. And we also tried to evaluate application possibility of the resistivity monitoring for construction safety through providing detailed information on fault zones.

  • PDF

Borehole radar survey to explore limestone cavities for the construction of a highway bridge

  • Kim Jung-Ho;Cho Seong-Jun;Yi Myeong-Jong
    • Geophysics and Geophysical Exploration
    • /
    • v.7 no.1
    • /
    • pp.80-87
    • /
    • 2004
  • During excavation work for the construction of a highway bridge in a limestone area in Korea, several cavities were found, and construction work was stopped temporarily. Cavities under the bridge piers might seriously threaten the safety of the planned bridge, because they could lead to excessive subsidence and differential settlement of the pier foundations. In order to establish a method for reinforcement of the pier foundations, borehole radar reflection and tomography surveys were carried out, to locate cavities under the planned pier locations and to determine their sizes where they exist. Since travel time data from the crosshole radar survey showed anisotropy, we applied an anisotropic tomography inversion algorithm assuming heterogeneous elliptic anisotropy, in order to reconstruct three kinds of tomograms: tomograms of maximum and minimum velocities, and of the direction of the symmetry axis. The distribution of maximum velocity matched core logging results better than that of the minimum velocity. The degree of anisotropy, defined by the normalized difference between maximum and minimum velocities, was helpful in deciding whether an anomalous zone in a tomogram was a cavity or not. By careful examination of borehole radar reflection and tomography images, the spatial distributions of cavities were delineated, and most of them were interpreted as being filled with clay and/or water. All the interpretation results implied that two faults imaged clearly by a DC resistivity survey were among the most important factors controlling the groundwater movement in the survey area, and therefore were closely related to the development of cavities. The method of reinforcement of the pier foundations was based on the interpretation results, and the results were confirmed when construction work was resumed.

Detection of Subsurface Ancient Remains in Sooseong Dang Area, Buan Using Ground Penetration Radar Technique (지하투과레이다 기법을 이용한 부안 수성당 지역의 지하 유적 탐사)

  • Lee, Hyoun-Jae;Jeon, Hang-Tak;Yun, Sul-Min;Hamm, Se-Yeong
    • The Journal of Engineering Geology
    • /
    • v.29 no.4
    • /
    • pp.553-563
    • /
    • 2019
  • In order to survey archaeological sites, drilling and excavation are carried out at the final stage. However, at the preliminary stage, non-excavation geophysical prospection is used for assessing underground archaeological ruins. Among the geophysical prospecting techniques, Ground Penetration Radar (GPR) prospection has effectively been applied to historical sites due to its high resolution at shallow depths. In this study, the GPR prospection was conducted to find underground ruins near Suseong-Dang, the place of ancient rituals in Buan area, Korea. First, the GPR prospection was conducted at three sites (Site-1, 2, and 3), and subsequently, the GPR prospection was carried out at Site-3 in more detail. As a result of the prospection, the underground layered structure of the survey area consists of three layers, which are soil layer, weathered rock, and sound rock from the surface. And the GPR anomaly to the archaeological structure was clearly identified at around 100-cm depth showing est-west direction that is parallel to the long-axis array. This GPR anomaly of irregular geomorphological features and intermittent distribution may be related to the ritual remains found in Suseong Dang. The GPR prospection could be effectively used to detect archaeological sites or remains buried in the ground.

Achievements and Tasks of Korea-Japan Geophysical Exploration through Burial mounds Exploration (고분 탐사를 통해 본 한·일 물리탐사의 성과와 과제)

  • Shin, Jong woo
    • Korean Journal of Heritage: History & Science
    • /
    • v.48 no.4
    • /
    • pp.74-93
    • /
    • 2015
  • Geophysical survey of Korea was introduced in Nara National Research Institute of Cultural Heritage in 1995. At that time, it has been activated geophysical survey of architecture and civil engineering in Korea. But there was no exploration experts to be combined the archaeology. For this reason, National Research Institute of Cultural Heritage has introduced the physical exploration. Through the expert exchanges South Korea and Japan carried out joint exploration. And it has increased the reliability of the exploration method and exploration results. It is GPR the most method commonly in geophysical exploration. There are many usability before excavation because of good resolution. However, the shallow GPR penetration depth has limitations in large mounds. We were able to take advantage of the resistivity analysis program to study the underground structure to deep through the experts exchange. We was able to get a good result that overcomes the limitations of GPR exploration in a number of burial mounds including Naju bokamri by the resistivity analysis program. In particular, we confirmed the location of the burial main body by compares the results of exploration and excavation results. In the future we will perform a convergence research of exploration and archaeology through a variety of joint research. In addition we will have to build a new network of archaeological science.

Determination of the latest fault movement by trench survey at Galgok-Chisil site in the northern Ulsan fault system (울산단층북부 갈곡리 치실 지점의 마지막 단층 운동시기 결정)

  • Choi, Weon-Hack;Chang, Chun-Joong;Inoue, D.;Tanaka, T.
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2005.03a
    • /
    • pp.11-17
    • /
    • 2005
  • Along the Ulsan Fault System, many Quaternary faults have been reported and investigated with outcrop observation and trench excavation to clarify the neotectonic movements and fault parameters such as length, displacement, slip rate and recurrence interval. In the northern part of the Ulsan fault system, we have interpreted small scale(1:10,000) aerial photographs and extracted lineaments by geomophological features to select trench site. After precise field survey and tracing for lineaments, two trench sites at Galgokri, Gyeongju were selected on the lineament to elucidate the fault movement history. One is successful in finding faults but the other is not. In the Galgok-Chisil trench(3m(w) x 1.5m(d) x 10m(l)), very closed two Quaternary faults cut the alluvial deposits of which age shows about 10-3ka. More than three times of fault movements can be inferred by geologic structures and C-14 dating. Repeatedly fault movements had been occurred before 10 ka, between 10ka-4.9 ka, between 4.9-1.4 ka at Galgok-Chisil trench section.

  • PDF