• Title/Summary/Keyword: Excavated slope

Search Result 56, Processing Time 0.026 seconds

Analysis of Slope Stability in Slopes of Failed and not Excavated (붕괴된 사면과 굴착되지 않은 사면의 안정성 검토)

  • 유병옥;김경석;이용희
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.06a
    • /
    • pp.129-144
    • /
    • 2003
  • Generally, investigation methods of cut slope are conducted only geological surface survey to gain engineering geological data of cut slopes. These methods have many problems such as limitations of investigation for a special area. So geophysical investigations such as geotomography, seismic and electrical resistivity methods have been used to search for failure surface in potential failure slopes or failed slopes. But investigation method using the borehole camera is recently a used method and it is thought that this method is more reliable method than other investigation methods because of being able to see by the eyes. Therefore, this paper was conducted investigations of borings and BIPS(Borehole Image Processing System) to search for potential sliding surfaces and was applied to obtain information of discontinuity on failed and potential failure slope in highway. As the results of BIPS, we could decide potential sliding surface in the slope, conducted to check slope stability and decided slope stability measures.

  • PDF

Stability Analysis and Reinforcement of Large Excavated Slope considering Precipitation Infiltration in Rainy Season (강우침투로 인한 대절취사면의 붕괴안정성검토 및 대책)

  • Chun, Byung-Sik;Choi, Hyun-Seok
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.4 no.1
    • /
    • pp.101-110
    • /
    • 2000
  • In case heavy rainfall is a key factor of slope failure, the failure zone is usually developed within the depth of 3~5m from the ground surface regardless of the location of the watertable. If rainfall is taken into consideration, it is general that the slope stability analysis is carried out under the assumption that the cut slope is saturated to the slope surface or the watertable elevates to a certain height so that ${\gamma}_{sat}$, the unit weight of saturated soil, is used. However, the analysis method mentioned above can't exactly simulate the variation of pore water pressure in the slope and yields different failure shape. The applicability of slope stability analysis method considering the distribution of pore water pressure within the slope with heavy rainfalls, was checked out after the stability analysis of a lage-scale cut slope in a highway construction site, where surface failure occurred with heavy rainfalls. An appropriate slope stabilization method is proposed on the base of the outcome of the analysis.

  • PDF

A Study for Landslides of Chungju Dam Right Abutment (충주(忠州)댐 우안(右岸) 산사태(山沙汰)에 관한 연구(硏究))

  • Choi, Young Jin;Song, Moo Young
    • Economic and Environmental Geology
    • /
    • v.24 no.3
    • /
    • pp.309-318
    • /
    • 1991
  • Analysis for landslides was studied in framework of Chungju dam right abutment, 6.5km northeast of Chungju city. $5.5{\times}10^6m^3$ landslide materials were excavated during dam construction for safety of the Chungju dam. Geology of study area is composed mainly of meta sediments such as dolomitic limestone, quartzite and schist which are dipping toward the Nam Han river. Scanline survey of discontinuities was performed for slope stability, resistivity exploration was performed for the evaluation of potential failure plane, and direct shear strength test of rocks and soils was performed for the effect on landslide. Monitoring systems of tiltmeter, tensiometer, ground water observation hole and level monument were installed during dam construction and interpreted for the evaluation of slope instability. Kinematic solution of the geological structure and evaluation using safety factor for slope may prove the failure of the slope.

  • PDF

Introduction of Q-slope and its Application Case in a Open Pit Coal Mine (Q-slope의 소개와 노천채탄장에서의 적용 사례)

  • Sunwoo, Choon
    • Tunnel and Underground Space
    • /
    • v.29 no.5
    • /
    • pp.305-317
    • /
    • 2019
  • The RMR and Q-system for characterizing rock mass and drilling core, and for estimating the support and reinforcement measures in mine galleries, tunnels and caverns have been widely used by engineers. SMR has been widely used in the rock mass classification for rock slope, but Q-Slope has been introduced into slopes since 2015. In the last ten years, a modified Q-system called Q-slope has been tested by the many authors for application to the benches in open pit mines and excavated road rock slopes. The results have shown that a simple correlation exists between Q-slope values and the long-term stable and unsupported slope angles. Just as RMR and Q have been used together in a tunnel or underground space and complemented by comparison, Q-Slope can be used in parallel with SMR. This paper introduces how to use Q-Slope which has not been announced in Korea and application examples of Pasir open pit coal mine in Indonesia.

Stability Analysis of Excavation Slope on Soft Ground (연약지반 굴착사면의 안정해석)

  • Kang, Yea Mook;Cho, Jae Hong;Kim, Yong Seong;Kim, Ji Hoon
    • Korean Journal of Agricultural Science
    • /
    • v.23 no.1
    • /
    • pp.25-38
    • /
    • 1996
  • To investigate the stability problem of irrigation-drainage channel excavation slope on soft ground, analyzed the behavior of the soft ground with excavation slope by the limit equilibrium method and the finite element method, and compared with field tests. The results of this study were summarized as follows; 1. When rapid drawdown the water level, the crack was occurred by the effect of the excess pore water pressure, and the pore water pressure was decreased slowly. 2. As the width of excavation was larger, the crack width was larger. And, excavated depth was deeper, the progressive failure was appeared. 3. When the soft ground excavation was small-scale, the minimum safety factor was more effected by cohesion(1.0, 1.5, 2.0, 2.5, 3.0) than excavated slope inclination(1:l, 1:1.5, 1:2). 4. As excavation was progressed, the settlement occurred on the top-slope due to plastic domain, and heaving was occurred at the bottom of excavation. 5. The maximum shear stress was appeared greatly as the base part of slope went down. Because of the increase of the maximum shear stress, tension area occurred and local failure possibility was increased. 6. As the excavation depth was increased, the maximum shear strain was appeared greatly at the base of slope and distribution pattern was concentrated beneath the middle of slope.

  • PDF

Experimental Study on the Ground Behavior around a Tunnel due to the Sidewall Deformation of Shallow Tunnel in Longitudinal Direction Excavated under the Slope (사면 하부지반에 종단 방향으로 굴착한 얕은 터널에서 측벽변형에 따른 터널 주변지반의 거동에 대한 실험적 연구)

  • Na, Yong Soo;Lee, Sang Duk
    • Journal of the Korean Geotechnical Society
    • /
    • v.35 no.5
    • /
    • pp.21-30
    • /
    • 2019
  • While the study of the shallow tunnel has been mainly on the longitudinal load transfer and horizontal surface conditions, the study of the ground behavior of shallow tunnel under the slope is not sufficient. Therefore, in this study on the ground behavior around a tunnel due to the sidewall deformation of shallow tunnel under the slope that is excavated in longitudinal direction, a scale-down model test has been performed. The model tunnel has the dimension of 320 mm wide, 210 mm high and 55 mm long with enough material strength in aluminum and the model ground has the uniform ground conditions by 3 types of carbon rods. The model test has been performed with the variables of slopes and the cover depths by controlling the tunnel sidewall deformation, and the change of sidewall-load, load transfer, ground subsidence was monitored and analyzed. According to the increase of the slope, the maximum ground subsidence increased by 20~39% compared to the horizontal surface. The load ratio increased by maximum 20% in the tunnel crown and decreased in sidewall according to the surface slope. The load transfer shows maximum 128% of increase at the cover depth of 1.0D, while at the 1.5D cover depth it shows non-critical difference from horizontal surface. The slope has major effects on load transfer at the cover depth of 1.0D.

An Applied Case to the Slope Revegetation Technology of Biological Engineering Regarding Nutritional Propagation - In the case of sandy cut-slope - (버드나무의 영양번식을 이용한 생물공학적 사면녹화공법의 적용사례 - 토사로 구성된 절토면을 대상으로 -)

  • Kim, Hyea-Ju;Lee, Joon-Heon
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.1 no.1
    • /
    • pp.63-69
    • /
    • 1998
  • The slope revegetation methods in Korea are generally the hydroseeding mixed with perennial herbs, soil, fibers, and fertilizer in consideration of scenic landscape rather than ecological and engineering effect. But perennial herbs can't protect the slope from deep surface erosion and they are not tall enough to create the original naturalness at the boundary parts of existing woodlands. This study is about the slope revegetation method using nutritional propagation capacity of plants and the experimental construction was carried out on the cut-slope of Yongin Hoam C.C. We dug several trenches to a depth of 80cm and at intervals of 150cm from each other. After placing various kinds of live branches(Salix species) into the trench, we backfilled with the excavated soils and finally sprayed water mixed with soil-stabilizer, fertilizer. As six months passed, we made a vegetation research and check the slope surface erosion. Vegetation research was performed in examining the frequency of each block using transect method. 31 kinds of plant species appeared in total area($113.6m^2$) and the dominant species are Setaria viridis, Artemisia rubripes, Persicaria pubescens, Plantago asiatica, Cyperus amuricus, Commelina communis. Among the examined blocks, '아', the top part of the slope, showed the ratio of 1.4 as the highest Alpha-diversity. With regard to life form, therophytes were shown dominant distribution of 58% of total species and neophytes relatively low distribution of 16%. It can be estimated that there is no ecological stabilization of this slope, because of ruderal species' occupation of 74% in total area. Regarding the slope stabilization, the serious surface erosion didn't take place in spite of heavy rainfall this year, but a little surface erosion took place at the block where no other species coming from outside of the site were found.

  • PDF

Effect of Extreme Rainfall on Cut Slope Stability: Case Study in Yen Bai City, Viet Nam

  • Tran, The Viet;Trinh, Minh Thu;Lee, Giha;Oh, Sewook;Nguyen, Thi Hai Van
    • Journal of the Korean GEO-environmental Society
    • /
    • v.16 no.4
    • /
    • pp.23-32
    • /
    • 2015
  • This paper addresses the effects of extreme rainfall on the stability of cut slopes in Yen Bai city, Northern Viet Nam. In this area, natural slopes are excavated to create places for infrastructures and buildings. Cut slopes are usually made without proper site investigations; the design is mostly based on experience. In recent years, many slope failures have occurred along these cuts especially in rainy seasons, resulting in properties damaged and loss of lives. To explain the reason that slope failure often happens during rainy seasons, this research analyzed the influence of extreme rainfalls, initial ground conditions, and soil permeability on the changes of pore water pressure within the typical slope, thereafter determining the impact of these changes on the slope stability factor of safety. The extreme rainfalls were selected based on all of the rainfalls triggering landslide events that have occurred over the period from 1960 to 2009. The factor of safety (FS) was calculated using Bishop's simplified method. The results show that when the maximum infiltration capacity of the slope top soil is less than the rainfall intensity, slope failures may occur 14 hours after the rain starts. And when this happens, the rainfall duration is the deciding factor that affects the slope FS values. In short, cut slopes in Yen Bai may be stable in normal conditions after the excavation, but under the influence of tropical rain storms, their stability is always questionable.

New Surveying Methods for Rock Slopes (암반사면의 새로운 조사기법)

  • Hwang, Sang-Gi
    • Proceedings of the KSR Conference
    • /
    • 2009.05a
    • /
    • pp.1016-1019
    • /
    • 2009
  • Detailed survey of the rock mass is essential for design, construction and maintenance of rock slope. However, geological survey of poor outcrops and various geophysical aids provides limited information for slope engineering. Remote measurement system for excavation surface (Surface Mapper) and projection s/w for borehole data (Fracjection) are developed for further support of slope surveying. The Surface Mapper measures orientation of joint, fault, foliation on excavated rock surface and database the measured data. The Fracjection projects measurements in boreholes, which are obtained by BIPS, Televideo and DOM operation, to any expected excavation space. These methods promise new approaches for surveying, designing, constructing and maintaining processes of slope.

  • PDF

A Study of the Applicability of Cross-Section Method for Cut-Slope Stability Analysis (개착사면의 안정성 해석을 위한 횡단면 기법의 활용성 고찰)

  • Cho, Tae-Chin;Hwang, Taik-Jean;Lee, Guen-Ho;Cho, Kye-Seong;Lee, Sang-Bae
    • Tunnel and Underground Space
    • /
    • v.22 no.1
    • /
    • pp.43-53
    • /
    • 2012
  • Stability of cut-slope, the orientation and dimension of which are gradually changed, has been analyzed by employing the cross-section method capable of comprehensibly considering the lithological, structural and mechanical characteristics of slope rock. Lithological fragility is investigated by inspecting the drilled core logs and BIPS image has been taken to delineate the rock structure. Engineering properties of drilled-core including the joint shear strength have been also measured. Potential failure modes of cut-slope and failure-induced joints are identified by performing the stereographic projection analysis. Traces of potential failure-induced joints are drawn on the cross-section which depicts the excavated geometry of cut-slope. Considering the distribution of potential plane failure-induced joint traces blocks of plane failure mode are hypothetically formed. The stabilities and required reinforcements of plane failure blocks located at the different excavation depth have been calculated to confirm the applicability of the cross-section method for the optimum cut-slope design.