• Title/Summary/Keyword: Exact variance ratio test

Search Result 4, Processing Time 0.019 seconds

Exact Tests for Variance Ratios in Unbalanced Random Effect Linear Models

  • Huh, Moon-Yul;Li, Seung-Chun
    • Journal of the Korean Statistical Society
    • /
    • v.25 no.4
    • /
    • pp.457-469
    • /
    • 1996
  • In this paper, we propose a method for an exact test of H : $p_i$ = $r_i$ for all i against K : $p_i$ $\neq$ $r_i$ for some i in an unbalanced random effect linear model, where $p_i$ denotes the ratio of the i-th variance component to the error variance. Then we present a method to test H : $p_i$ $\leq$ r against K : $p_i$> r for some specific i by applying orthogonal projection on the model. We also show that any test statistic that follows an F-distribution on the boundary of the hypotheses is equal to the one given here.

  • PDF

Rao-Wald Test for Variance Ratios of a General Linear Model

  • Li, Seung-Chun;Huh, Moon-Yul
    • Communications for Statistical Applications and Methods
    • /
    • v.6 no.1
    • /
    • pp.11-24
    • /
    • 1999
  • In this paper we propose a method to test $\textit{H}$:$\rho_i$=$\gamma_i$ for 1$\leq$$\textit{i}$$\leq$$\ell$ against $\textit{K}$:$\rho_i$$\neq$$\gamma_i$ for some iin k-variance component random or mixed linear model where $\rho$i denotes the ratio of the i-th variance component to the error variance and $\ell$$\leq$K. The test which we call Rao-Wald test is exact and does not depend upon nuisance parameters. From a numerical study of the power performance of the test of the interaction effect for the case of a two-way random model Rao-Wald test was seen to be quite comparable to the locally best invariant (LBI) test when the nuisance parameters of the LBI test are assumed known. When the nuisance parameters of the LBI test are replaced by maximum likelihood estimators Rao-Wald test outperformed the LBI test.

  • PDF

A Study on Estimation of the Delivery Ratio by Flow Duration in a Small-Scale Test Bed for Managing TMDL in Nakdong River (낙동강수계 수질오염총량관리를 위한 시범소유역 유황별 유달율 산정방법 연구)

  • Shon, Tae-Seok;Park, Jae-Bum;Shin, Hyun-Suk
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.5
    • /
    • pp.792-802
    • /
    • 2009
  • The objective of this study is to construct the watershed management system with link of the non-point sources model and to estimate delivery ratio duration curves for various pollutants. For the total water pollution load management system, non-point source model should be performed with the study of the characteristic about non-point sources and loadings of non-point source and the allotment of pollutant in each area. In this study, daily flow rates and delivered pollutant loads of Nakdong river basin are simulated with modified TANK model and minimum variance unbiased estimator and SWAT model. Based on the simulation results, flow duration curves, load duration curves, and delivery ratio duration curves have been established. Then GIS analysis is performed to obtain several hydrological geomorphic characteristics such as watershed area, stream length, watershed slope and runoff curve number. As a result, the SWAT simulation results show good agreements in terms of discharge, BOD, TN, TP but for more exact simulation should be kept studying about variables and parameters which are needed for simulation. And as a result of the characteristic discharges, pollutants loading with the runoff and delivery ratios, non-point sources effects were higher than point sources effects in the small-scale test bed of Nakdong river basin.

The Influence of Iteration and Subset on True X Method in F-18-FPCIT Brain Imaging (F-18-FPCIP 뇌 영상에서 True-X 재구성 기법을 기반으로 했을 때의 Iteration과 Subset의 영향)

  • Choi, Jae-Min;Kim, Kyung-Sik;NamGung, Chang-Kyeong;Nam, Ki-Pyo;Im, Ki-Cheon
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.14 no.1
    • /
    • pp.122-126
    • /
    • 2010
  • Purpose: F-18-FPCIT that shows strong familiarity with DAT located at a neural terminal site offers diagnostic information about DAT density state in the region of the striatum especially Parkinson's disease. In this study, we altered the iteration and subset and measured SUV${\pm}$SD and Contrasts from phantom images which set up to specific iteration and subset. So, we are going to suggest the appropriate range of the iteration and subset. Materials and Methods: This study has been performed with 10 normal volunteers who don't have any history of Parkinson's disease or cerebral disease and Flangeless Esser PET Phantom from Data Spectrum Corporation. $5.3{\pm}0.2$ mCi of F-18-FPCIT was injected to the normal group and PET Phantom was assembled by ACR PET Phantom Instructions and it's actual ratio between hot spheres and background was 2.35 to 1. Brain and Phantom images were acquired after 3 hours from the time of the injection and images were acquired for ten minutes. Basically, SIEMENS Bio graph 40 True-point was used and True-X method was applied for image reconstruction method. The iteration and Subset were set to 2 iterations, 8 subsets, 3 iterations, 16 subsets, 6 iterations, 16 subsets, 8 iterations, 16 subsets and 8 iterations, 21 subsets respectively. To measure SUVs on the brain images, ROIs were drawn on the right Putamen. Also, Coefficient of variance (CV) was calculated to indicate the uniformity at each iteration and subset combinations. On the phantom study, we measured the actual ratio between hot spheres and back ground at each combinations. Same size's ROIs were drawn on the same slide and location. Results: Mean SUVs were 10.60, 12.83, 13.87, 13.98 and 13.5 at each combination. The range of fluctuation by sets were 22.36%, 10.34%, 1.1%, and 4.8% respectively. The range of fluctuation of mean SUV was lowest between 6 iterations 16 subsets and 8 iterations 16 subsets. CV showed 9.07%, 11.46%, 13.56%, 14.91% and 19.47% respectively. This means that the numerical value of the iteration and subset gets higher the image's uniformity gets worse. The range of fluctuation of CV by sets were 2.39, 2.1, 1.35, and 4.56. The range of fluctuation of uniformity was lowest between 6 iterations, 16 subsets and 8 iterations, 16 subsets. In the contrast test, it showed 1.92:1, 2.12:1, 2.10:1, 2.13:1 and 2.11:1 at each iteration and subset combinations. A Setting of 8 iterations and 16 subsets reappeared most close ratio between hot spheres and background. Conclusion: Findings on this study, SUVs and uniformity might be calculated differently caused by variable reconstruction parameters like filter or FWHM. Mean SUV and uniformity showed the lowest range of fluctuation at 6 iterations 16 subsets and 8 iterations 16 subsets. Also, 8 iterations 16 subsets showed the nearest hot sphere to background ratio compared with others. But it can not be concluded that only 6 iterations 16 subsets and 8 iterations 16 subsets can make right images for the clinical diagnosis. There might be more factors that can make better images. For more exact clinical diagnosis through the quantitative analysis of DAT density in the region of striatum we need to secure healthy people's quantitative values.

  • PDF