• Title/Summary/Keyword: Exact analytical method

Search Result 195, Processing Time 0.025 seconds

Augmented Displacement Load Method for Nonlinear Semi-analytical Design Sensitivity Analysis (준해석적 비선형 설계민감도를 위한 개선된 변위하중법)

  • Lee, Min-Uk;Yoo, Jung-Hun;Lee, Tae-Hee
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.492-497
    • /
    • 2004
  • Three methods for design sensitivity such as numerical differentiation, analytical method and semi-analytical method have been developed for the last three decades. Although analytical design sensitivity analysis is exact, it is hard to implement for practical design problems. Therefore, numerical method such as finite difference method is widely used to simply obtain the design sensitivity in most cases. The numerical differentiation is sufficiently accurate and reliable for most linear problems. However, it turns out that the numerical differentiation is inefficient and inaccurate because its computational cost depends on the number of design variables and large numerical errors can be included especially in nonlinear design sensitivity analysis. Thus semi-analytical method is more suitable for complicated design problems. Moreover semi-analytical method is easy to be performed in design procedure, which can be coupled with an analysis solver such as commercial finite element package. In this paper, implementation procedure for the semi-analytical design sensitivity analysis outside of the commercial finite element package is studied and computational technique is proposed, which evaluates the pseudo-load for design sensitivity analysis easily by using the design variation of corresponding internal nodal forces. Errors in semi-analytical design sensitivity analysis are examined and numerical examples are illustrated to confirm the reduction of numerical error considerably.

  • PDF

Investigation of the Stress Distributions in a Transversely Isotropic Medium Containing a Spheroidal Cavity (구형 공동을 가진 횡 방향 등방성매체의 응력 분포에 관한 연구)

  • 이윤복;전종균
    • Computational Structural Engineering
    • /
    • v.10 no.1
    • /
    • pp.159-171
    • /
    • 1997
  • This study investigates the stress distribution in a transversely isotropic medium containing a spheroidal cavity where the medium is under uniaxial tension in z-direction in one case and pure shear in the plane of isotropy in another case. The technical approach used in this study combines exact analytical and numerical methods. The exact analytical method is based upon three potential functions taken in terms of the Legendre associated functions of the first and second kind. The numerical method is based upon the finite difference approach. Numerical results concerning the two loading conditions with five anisotropic materials are presented.

  • PDF

Transient wave propagation in piezoelectric hollow spheres subjected to thermal shock and electric excitation

  • Dai, H.L.;Wang, X.
    • Structural Engineering and Mechanics
    • /
    • v.19 no.4
    • /
    • pp.441-457
    • /
    • 2005
  • An analytical method is presented to solve the problem of transient wave propagation in a transversely isotropic piezoelectric hollow sphere subjected to thermal shock and electric excitation. Exact expressions for the transient responses of displacements, stresses, electric displacement and electric potentials in the piezoelectric hollow sphere are obtained by means of Hankel transform, Laplace transform, and inverse transforms. Using Hermite non-linear interpolation method solves Volterra integral equation of the second kind involved in the exact expression, which is caused by interaction between thermo-elastic field and thermo-electric field. Thus, an analytical solution for the problem of transient wave propagation in a transversely isotropic piezoelectric hollow sphere is obtained. Finally, some numerical results are carried out, and may be used as a reference to solve other transient coupled problems of thermo-electro-elasticity.

A Study on the Error Analysis of the Numerical Solution using Inverse Method (역해석 기법을 이용한 수치해의 오차 분석 연구)

  • Yang, Sung-Wook;Lee, Sang-Chul
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.16 no.2
    • /
    • pp.21-27
    • /
    • 2008
  • An inverse method is introduced to construct the problem for the error analysis of the numerical solution of initial value problem. These problems constructed through this method have a known exact solution, even though analytical solutions are generally not obtainable. The process leading to the exact solution makes use of an initially available approximate numerical solution. A smooth interpolation of the approximate solution is forced to exactly satisfy the differential equation by analytically deriving a small forcing function to absorb all of the errors in the interpolated approximate solution. Using this special case exact solution, it is possible to investigate the relationship between global errors of a candidate numerical solution process and the associated tuning parameters for a given problem. Under the assumption that the original differential equation is well-posed with respect to the small perturbations, we thereby obtain valuable information about the optimal choice of the tuning parameters and the achievable accuracy of the numerical solution.

  • PDF

The Analytical Transfer Matrix Method Combined with Supersymmetry: Coulomb Potential

  • Sun, Ho-Sung
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.3
    • /
    • pp.408-412
    • /
    • 2007
  • Combining the analytical transfer matrix method with supersymmetry algebra, a new quantization condition is suggested. To demonstrate the efficiency of the new quantization condition, the eigenenergies of the Coulomb potential are analytically derived. The scattering-led phase shifts are also determined and they are the same for all Coulomb potential states. It is found that the new quantization condition is mathematically simple and exact.

A Refined Semi-Analytic Sensitivity Study Based on the Mode Decomposition and Neumann Series Expansion (I) - Static Problem - (강체모드분리와 급수전개를 통한 준해석적 민감도 계산 방법의 개선에 관한 연구(I) - 정적 문제 -)

  • Cho, Maeng-Hyo;Kim, Hyun-Gi
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.4
    • /
    • pp.585-592
    • /
    • 2003
  • Among various sensitivity evaluation techniques, semi-analytical method(SAM) is quite popular since this method is more advantageous than analytical method(AM) and global finite difference method(FDM). However, SAM reveals severe inaccuracy problem when relatively large rigid body motions are identified fur individual elements. Such errors result from the numerical differentiation of the pseudo load vector calculated by the finite difference scheme. In the present study, an iterative method combined with mode decomposition technique is proposed to compute reliable semi-analytical design sensitivities. The improvement of design sensitivities corresponding to the rigid body mode is evaluated by exact differentiation of the rigid body modes and the error of SAM caused by numerical difference scheme is alleviated by using a Von Neumann series approximation considering the higher order terms for the sensitivity derivatives.

Analytical solutions of in-plane static problems for non-uniform curved beams including axial and shear deformations

  • Tufekci, Ekrem;Arpaci, Alaeddin
    • Structural Engineering and Mechanics
    • /
    • v.22 no.2
    • /
    • pp.131-150
    • /
    • 2006
  • Exact analytical solutions for in-plane static problems of planar curved beams with variable curvatures and variable cross-sections are derived by using the initial value method. The governing equations include the axial extension and shear deformation effects. The fundamental matrix required by the initial value method is obtained analytically. Then, the displacements, slopes and stress resultants are found analytically along the beam axis by using the fundamental matrix. The results are given in analytical forms. In order to show the advantages of the method, some examples are solved and the results are compared with the existing results in the literature. One of the advantages of the proposed method is that the high degree of statically indeterminacy adds no extra difficulty to the solution. For some examples, the deformed shape along the beam axis is determined and plotted and also the slope and stress resultants are given in tables.

Standardization of Hippocastani Semen Extract (서양칠엽수종자엑스 기준및시험법 비교 및 규격 설정)

  • Kim, Seung-Hyun;Kim, Dae-Hyun;Park, Jin-Ho;Cho, Chang-Hee;Lee, Jong-Pill;Kang, Shin-Jung;Lee, Mi-Na;Sung, Sang-Hyun
    • Journal of Pharmaceutical Investigation
    • /
    • v.40 no.1
    • /
    • pp.59-61
    • /
    • 2010
  • This study was carried out to establish standard analytical method of Hippocastani Semen extract. Each standard analytical methods were covered for exact and efficient analytical method. Consequently, analytical method of Deutsches Arzneibuch has been adopted for Hippocastani Semen extract. Analytical methods established in this study could be applied to a reasonable and unified quality control of Hippocastani Semen extract.

Deflection of axially functionally graded rectangular plates by Green's function method

  • Rezaiee-Pajand, Mohammad;Sani, Ahmad Aftabi;Hozhabrossadati, Seyed Mojtaba
    • Steel and Composite Structures
    • /
    • v.30 no.1
    • /
    • pp.57-67
    • /
    • 2019
  • This paper deals with the static analysis of axially functionally graded rectangular plates. It is assumed that the flexural rigidity of the plate varies exponentially along one of the plate's in-plane dimensions. Both an analytical approach and a numerical method are utilized to solve the problem. The analytical solution is obtained by using the Green's function method. To employ this approach, the adjoint boundary value problem is established. Then, exact solutions for deflection of the plate for different boundary conditions are found. In another way, a finite element formulation for the problem is developed. In order to demonstrate the validity of the Authors' formulation, the results obtained via both mentioned schemes are compared with each other for functionally graded plates and with results of previously published works for homogeneous plates. The effect of plate parameters on the response of the plate is also investigated. To remind the research background, a brief review on the application of Green's function method in plates' analysis and functionally graded plates is also presented.

Consistent Displacement Load Method for Nonlinear Semi-Analytical Design Sensitivity Analysis (준해석적 비선형 설계민감도를 위한 보정변위하중법)

  • Lee, Min-Uk;Yoo, Jung-Hun;Lee, Tae-Hee
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.9 s.240
    • /
    • pp.1209-1216
    • /
    • 2005
  • Three methods for design sensitivity such as numerical differentiation, analytical method and semi-analytical method have been developed for the last three decades. Although analytical design sensitivity analysis is exact, it is hard to implement for practical design problems. Therefore, numerical method such as finite difference method is widely used to simply obtain the design sensitivity in most cases. The numerical differentiation is sufficiently accurate and reliable for most linear problems. However, it turns out that the numerical differentiation is inefficient and inaccurate because its computational cost depends on the number of design variables and large numerical errors can be included especially in nonlinear design sensitivity analysis. Thus semi-analytical method is more suitable for complicated design problems. Moreover semi-analytical method is easy to be performed in design procedure, which can be coupled with an analysis solver such as commercial finite element package. In this paper, implementation procedure for the semi-analytical design sensitivity analysis outside of the commercial finite element package is studied and computational technique is proposed, which evaluates the pseudo-load for design sensitivity analysis easily by using the design variation of corresponding internal nodal forces. Errors in semi-analytical design sensitivity analysis are examined and numerical examples are illustrated to confirm the reduction of numerical error considerably.