• Title/Summary/Keyword: Evolutionary Relationships

Search Result 100, Processing Time 0.032 seconds

General properties and phylogenetic utilities of nuclear ribosomal DNA and mitochondrial DNA commonly used in molecular systematics

  • Hwang, Ui-Wook;Kim, Won
    • Parasites, Hosts and Diseases
    • /
    • v.37 no.4
    • /
    • pp.215-228
    • /
    • 1999
  • To choose one or more appropriate molecular markers or gene regions for resolving a particular systematic question among the organisms at a certain categorical level is still a very difficult process. The primary goal of this review, therefore, is to provide a theoretical information in choosing one or more molecular markers or gene regions by illustrating general properties and phylogenetic utilities of nuclear ribosomal DNA (rDNA) and mitochondrial DNA (mtDNA) that have been most commonly used for phylogenetic researches. The highly conserved molecular markers and/or gene regions are useful for investigating phylogenetic relationships at higher categorical levels (deep branches of evolutionary history). On the other hand, the hypervariable molecular markers and/or gene regions are useful for elucidating phylogenetic relationships at lower categorical levels (recently diverged branches). In summary, different selective forces have led to the evolution of various molecular markers or gene regions with varying degrees of sequence conservation. Thus, appropriate molecular markers or gene regions should be chosen with even greater caution to deduce true phylogenetic relationships over a broad taxonomic spectrum.

  • PDF

Molecular systematics of Poaceae based on eight chloroplast markers, emphasizing the phylogenetic positions of Korean taxa

  • LEE, Jung-Hoon;KIM, Ki-Joong;KIM, Bo-Yun;KIM, Young-Dong
    • Korean Journal of Plant Taxonomy
    • /
    • v.52 no.3
    • /
    • pp.127-143
    • /
    • 2022
  • This study was conducted to clarify the phylogenetic position and relationships of Korean Poaceae taxa. A total of 438 taxa including 155 accessions of Korean Poaceae (representing 92% and 72% of Korean Poaceous genera and species, respectively) were employed for phylogeny reconstruction. Sequence data of eight chloroplast DNA markers were used for molecular phylogenetic analyses. The resulted phylogeny was mostly concordant with previous phylogenetic hypotheses, especially in terms of subfamilial and tribal relationships. Several taxa-specific indels were detected in the molecular phylogeny, including a 45 bp deletion in rps3 (PACMAD [Panicoideae, Arundinoideae, Chloridoideae, Micrairoideae, Aristidoideae, Danthonioideae] clade), a 15 bp deletion in ndhF (Oryzeae + Phyllorachideae), a 6 bp deletion in trnLF (Poeae s.l.), and two (17 bp and 378 bp) deletions in atpF-H (Pooideae). The Korean Poaceae members were classified into 23 tribes, representing eight subfamilies. The subfamilial and tribal classifications of the Korean taxa were generally congruent with a recently published system, whereas some subtribes and genera were found to be non-monophyletic. The taxa included in the PACMAD clade (especially Andropogoneae) showed very weak and uncertain phylogenetic relationships, presumably to be due to evolutionary radiation and polyploidization. The reconstructed phylogeny can be utilized to update the taxonomic positions of the newly examined grass accessions.

Morphological Characteristics and Phylogenetic Trends of Trematode Cercariae in Freshwater Snails from Nakhon Nayok Province, Thailand

  • Chontananarth, Thapana;Tejangkura, Thanawan;Wetchasart, Napat;Chimburut, Cherdchay
    • Parasites, Hosts and Diseases
    • /
    • v.55 no.1
    • /
    • pp.47-54
    • /
    • 2017
  • The prevalence of cercarial infection in freshwater snails and their evolutionary trends were studied in Nakhon Nayok province, Thailand. A total of 2,869 individual snails were examined for parasitic infections. The results showed that 12 snail species were found to host larval stages of trematodes with an overall prevalence of 4.7%. The infected specimens included 7 types at the cercarial stage; cercariae, megalurous cercariae, echinostome cercariae, furcocercous cercariae, parapleurolophocercous cercariae, virgulate cercariae, and xiphidiocercariae. Regarding molecular identification, ITS2 sequence data of each larval trematode were analyzed, and a dendrogram was constructed using the neighbor-joining method with 10,000 replicates. The dendrogram was separated into 6 clades (order/family), including Echinostomatida/Echinostomatidae, Echinostomatida/Philophthalmidae, Opisthorchiida/Heterophyidae, Plagiorchiida/Prosthogonimidae, Plagiorchiida/Lecithodendriidae, and Strigeatida/Cyathocotylidae. These findings were used to confirm morphological characteristics and evolutionary trends of each type of cercariae discovered in Nakhon Nayok province. Furthermore, this investigation confirmed that the ITS2 data of cercariae could be used to study on phylogenetic relationships or to determine classification of this species at order and/or family level when possible.

An Evolutionary Concept Analysis of Forensic Nursing Competency (법의간호 역량에 대한 진화론적 개념분석)

  • Jo, Na Young;Lee, Yun Mi;Son, Youn-Jung
    • Journal of Korean Critical Care Nursing
    • /
    • v.11 no.2
    • /
    • pp.34-50
    • /
    • 2018
  • Purpose : This study aimed to clarify attributes, antecedents, and consequences of forensic nursing competency. Method : Rodgers' evolutionary concept analysis was used to analyze twenty nine articles on forensic nursing based on a systematic review of theology, medicine, psychology, and nursing literature. Results : Forensic nursing competency consists of the following seven attributes: awareness of the medico-legal problem, multidisciplinary integrated knowledge, education and training in forensic science, professional career development, evidence based practice in forensic nursing, collaborative forensic nursing with community partner, safety and security effective communication, and supportive relationships. Finally, we could explain the consequences of forensic nursing competency on knowledge construction in nursing, enhancing professional nursing, and establishing a human rights and social justice based approach. The antecedents of forensic nursing competency were forensic science interest, forensic science experience, and nurses' view of person in forensic-works. Conclusion : Based on these results, we recommend the development of a Korean version of a scale to assess forensic nursing competency.

Phylogenomics and its Growing Impact on Algal Phylogeny and Evolution

  • Adrian , Reyes-Prieto;Yoon, Hwan-Su;Bhattacharya, Debashish
    • ALGAE
    • /
    • v.21 no.1
    • /
    • pp.1-10
    • /
    • 2006
  • Genomic data is accumulating in public database at an unprecedented rate. Although presently dominated by the sequences of metazoan, plant, parasitic, and picoeukaryotic taxa, both expressed sequence tag (EST) and complete genomes of free-living algae are also slowly appearing. This wealth of information offers the opportunity to clarify many long-standing issues in algal and plant evolution such as the contribution of the plastid endosymbiont to nuclear genome evolution using the tools of comparative genomics and multi-gene phylogenetics. A particularly powerful approach for the automated analysis of genome data from multiple taxa is termed phylogenomics. Phylogenomics is the convergence of genomics science (the study of the function and structure of genes and genomes) and molecular phylogenetics (the study of the hierarchical evolutionary relationships among organisms, their genes and genomes). The use of phylogenetics to drive comparative genome analyses has facilitated the reconstruction of the evolutionary history of genes, gene families, and organisms. Here we survey the available genome data, introduce phylogenomic pipelines, and review some initial results of phylogenomic analyses of algal genome data.

Functional Haplotypes and Evolutionary Analyses of SBE1 in Collected Rice Germplasm

  • Thant Zin Maung;Yong-Jin Park
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.216-216
    • /
    • 2022
  • The starch-branching enzymes (BEs) are responsible for synthesizing the amylopectin, which plays an important role in determining the structural and physical properties of starch granules. BE has two differently functioning isoforms (BEI and BEIIa/b) based on their difference in the chain-length pattern by the degree of polymerization (DP), which mainly contributes to the amylopectin chain length distribution in starch biosynthesis. In this study, we investigated functional haplotypes and evolutionary analyses of SBE1 in 374 rice accessions (320 Korean bred and 54 wild). The analyses were performed based on the classified subpopulations. Haplotype analysis generates a total of 8 haplotypes, of which only four haplotypes were functional carrying four functional SNPs in four different exons of SBE1 on chromosome 6. Nucleotide diversity analysis showed a highest pi-value in aromatic group (0.0029), while the lowest diversity value was in temperate japonica (0.0002), indicating the signal of this gene evolution origin. Different directional selections could be estimated by negative Tajima's D value of temperate japonica (-1.1285) and positive Tajima's D value of tropical japonica (0.9456), where the selective sweeps were undergone by both positive purifying and balancing selections. Phylogenetic analysis indicates a closer relationship of the wild with most of the cultivated subgroups indicating a common ancestor for SBE1 gene. FST-values indicate distant genetic relationships of temperate japonica from all other classified groups. PCA and population structure analysis show an admixed structure of wild and cultivated subpopulations in some proportions.

  • PDF

Analyses on Elementary Students' Cognitive Domain in Free Science Inquiry Activities Applying a Brain-Based Evolutionary Approach (뇌 기반 진화적 접근법을 적용한 초등학교 학생의 과학 자유탐구에서 인지적 영역 분석)

  • Baek, Ja-Yeon;Lim, Chae-Seong;Kim, Jae-Young
    • Journal of Korean Elementary Science Education
    • /
    • v.33 no.4
    • /
    • pp.773-783
    • /
    • 2014
  • In National Curriculum of Science revised in 2007, the Free Inquiry was newly introduced to increase students' interest in science and to foster creativity by having students make their own question and find answer by themselves. The purpose of the study was to analyze characteristics, in cognitive domain, appeared in the processes of performing the Free Inquiry activities applying a brain-based evolutionary science teaching and learning principles. For this study, 106 fifth grade students participated, and they performed individually Free Inquiry activities. In order to characterize of the diversifying, estimating-evaluating-executing, and extending-applying activities in cognitive domain (C-DEF), the Free Inquiry diary constructed by the students, observations by a researcher, and interviews with the students were analyzed both quantitatively and qualitatively. The major results of this study were as follows: First, at C-D step, many students (71.5%) had difficulty in searching the meanings of their results and the contents of interpretations were at the level of simple description of their results. A few students (15.2%) derived interpretations based on causal relationships between specific variable and result. Also, the tendency that the numbers of interpretation about meaning of their results were increased as the scores of science attitude and achievement was appeared. Second, at C-E step, the students showed tendency of considering facts exactly explaining inquiry topic and being appliable to daily life rather than objectivity or accuracy of scientific knowledge. Third, at C-F step, there were three types of extension and application: simple repetition (8.2%), extension (64.0%), and upward application (17.6%) types. Based on these findings, implications for supporting appropriate interpretation, evaluation, and application of inquiry results are discussed.

Multi-FNN Identification Based on HCM Clustering and Evolutionary Fuzzy Granulation

  • Park, Ho-Sung;Oh, Sung-Kwun
    • International Journal of Control, Automation, and Systems
    • /
    • v.1 no.2
    • /
    • pp.194-202
    • /
    • 2003
  • In this paper, we introduce a category of Multi-FNN (Fuzzy-Neural Networks) models, analyze the underlying architectures and propose a comprehensive identification framework. The proposed Multi-FNNs dwell on a concept of fuzzy rule-based FNNs based on HCM clustering and evolutionary fuzzy granulation, and exploit linear inference being treated as a generic inference mechanism. By this nature, this FNN model is geared toward capturing relationships between information granules known as fuzzy sets. The form of the information granules themselves (in particular their distribution and a type of membership function) becomes an important design feature of the FNN model contributing to its structural as well as parametric optimization. The identification environment uses clustering techniques (Hard C - Means, HCM) and exploits genetic optimization as a vehicle of global optimization. The global optimization is augmented by more refined gradient-based learning mechanisms such as standard back-propagation. The HCM algorithm, whose role is to carry out preprocessing of the process data for system modeling, is utilized to determine the structure of Multi-FNNs. The detailed parameters of the Multi-FNN (such as apexes of membership functions, learning rates and momentum coefficients) are adjusted using genetic algorithms. An aggregate performance index with a weighting factor is proposed in order to achieve a sound balance between approximation and generalization (predictive) abilities of the model. To evaluate the performance of the proposed model, two numeric data sets are experimented with. One is the numerical data coming from a description of a certain nonlinear function and the other is NOx emission process data from a gas turbine power plant.

A Taxonomic Study on Korean Allium L. Based on the Morphological Characters (형태학적 형질에 기초한 한국산 부추속의 분류학적 연구)

  • Choi, Hyeok-Jae;Jang, Chang-Gee;Lee, You-mi;Oh, Byoung-Un
    • Korean Journal of Plant Taxonomy
    • /
    • v.37 no.3
    • /
    • pp.275-308
    • /
    • 2007
  • For 20 taxa of Korean Allium, including 16 species and 5 varieties, examined were morphological characters (i.e. sexuality, structure and shape of underground part, types and growing patterns of leaf and scape, and shapes of perianth, filament and pistil). The specialization and the evolutionary trends of taxonomic characters were inferred from morphological examination. Taxonomic relationships and system of Korean Allium were also studied. The characters showing evolutionary trends were the structure and shape of underground part including rhizome and bulb, leaf, scape, inflorescens, filament and ovary. It seemed that thin and short rhizome developed from thick and long one, and the membranous simple bulb tunic evolved into fibrous reticulate one. The presence of hyaline sheath in A. monanthum of sect. Microscordum was apomorphic. Both angular leaf blade with 2-rowed vascular bundle and flat blade with 1-rowed vascular bundle were developed from terete one with 2-rowed vascular bundle. The base of filament have differentiated from entire to toothed, and 2-ovuled ovary as well as erect scape before flowering was plesiomorphic type. In addition, sexuality, structure of underground part, the presence of hyaline sheath and cross-section structure of leaf were taxonomic characters with the level of the subgenus in this genus. Shape of rhizome, bulb, leaf, scape and pedicel discriminated each section from other ones in the subgenera easily. The shape and arrangement of perianth and filaments were the diagnostic characters for species level along with shape of ovary and stigma.

The genetic structure of taro: a comparison of RAPD and isozyme markers

  • Sharma, Kamal;Mishra, Ajay Kumar;Misra, Raj Shekhar
    • Plant Biotechnology Reports
    • /
    • v.2 no.3
    • /
    • pp.191-198
    • /
    • 2008
  • Germplasm characterization and evolutionary process in viable populations are important links between the conservation and utilization of plant genetic resources. Here, an investigation is made, based on molecular and biochemical techniques for assessing and exploiting the genetic variability in germplasm characterization of taro, which would be useful in plant breeding and ex situ conservation of taro plant genetic resources. Geographical differentiation and phylogenetic relationships of Indian taro, Colocasia esculenta (L.) Schott, were analyzed by random amplified polymorphic DNA (RAPD) and isozyme of seven enzyme systems with specific reference to the Muktakeshi accession, which has been to be proved resistant to taro leaf blight caused by P. colocasiae. The significant differentiations in Indian taro cultivars were clearly demonstrated by RAPD and isozyme analysis. RAPD markers showed higher values for genetic differentiation among taro cultivars and lower coefficient of variation than those obtained from isozymes. Genetic differentiation was evident in the taro accessions collected from different regions of India. It appears that when taro cultivation was introduced to a new area, only a small fraction of genetic variability in heterogeneous taro populations was transferred, possibly causing random differentiation among locally adapted taro populations. The selected primers will be useful for future genetic analysis and provide taro breeders with a genetic basis for selection of parents for crop improvement. Polymorphic markers identified in the DNA fingerprinting study will be useful for screening a segregating population, which is being generated in our laboratory aimed at developing a taro genetic linkage map.