• Title/Summary/Keyword: Evolution equation

Search Result 280, Processing Time 0.031 seconds

Properties of Hydration Heat with Compressive Strength Level of High Flowing Self-Compacting Concrete (고유동 자기충전 콘크리트의 압축강도 수준에 따른 수화발열 특성)

  • Choi, Yun Wang;Jung, Jea Gwone;Lee, Jae Nam;Kim, Byoung Kwon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.5A
    • /
    • pp.531-541
    • /
    • 2009
  • The research analyzes and investigates conventional concrete, hydration heat, set, and mechanical properties by making high flowing self-compacting concretes of binary blend and ternary blend as one of evaluations about the properties of the hydration heat of high flowing self-compacting concrete with a strength of 30, 50, and 70 MPa. In addition, it estimates concrete adiabatic temperatures by calculating a thermal property value of powder obtained by measuring a heat evolution amount for powder used in concrete, a thermal property value of concrete obtained by conducting a simple adiabatic temperature test, and a normal thermal property value of material used in concrete, using a simple equation. Moreover, it analyzes and investigates the hydration heat property of high flowing self-compacting concrete and the thermal stress caused by hydration heat by conducting a 3D temperature stress analysis for the hydration heat and the adiabatic temperature obtained by temperature analysis, using MIDAS CIVIL 06 program.

Numerical Analysis of Unstable Combustion Flows in Normal Injection Supersonic Combustor with a Cavity (공동이 있는 수직 분사 초음속 연소기 내의 불안정 연소유동 해석)

  • Jeong-Yeol Choi;Vigor Yang
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.05a
    • /
    • pp.91-93
    • /
    • 2003
  • A comprehensive numerical study is carried out to investigate for the understanding of the flow evolution and flame development in a supersonic combustor with normal injection of ncumally injecting hydrogen in airsupersonic flows. The formulation treats the complete conservation equations of mass, momentum, energy, and species concentration for a multi-component chemically reacting system. For the numerical simulation of supersonic combustion, multi-species Navier-Stokes equations and detailed chemistry of H2-Air is considered. It also accommodates a finite-rate chemical kinetics mechanism of hydrogen-air combustion GRI-Mech. 2.11[1], which consists of nine species and twenty-five reaction steps. Turbulence closure is achieved by means of a k-two-equation model (2). The governing equations are spatially discretized using a finite-volume approach, and temporally integrated by means of a second-order accurate implicit scheme (3-5).The supersonic combustor consists of a flat channel of 10 cm height and a fuel-injection slit of 0.1 cm width located at 10 cm downstream of the inlet. A cavity of 5 cm height and 20 cm width is installed at 15 cm downstream of the injection slit. A total of 936160 grids are used for the main-combustor flow passage, and 159161 grids for the cavity. The grids are clustered in the flow direction near the fuel injector and cavity, as well as in the vertical direction near the bottom wall. The no-slip and adiabatic conditions are assumed throughout the entire wall boundary. As a specific example, the inflow Mach number is assumed to be 3, and the temperature and pressure are 600 K and 0.1 MPa, respectively. Gaseous hydrogen at a temperature of 151.5 K is injected normal to the wall from a choked injector.A series of calculations were carried out by varying the fuel injection pressure from 0.5 to 1.5MPa. This amounts to changing the fuel mass flow rate or the overall equivalence ratio for different operating regimes. Figure 1 shows the instantaneous temperature fields in the supersonic combustor at four different conditions. The dark blue region represents the hot burned gases. At the fuel injection pressure of 0.5 MPa, the flame is stably anchored, but the flow field exhibits a high-amplitude oscillation. At the fuel injection pressure of 1.0 MPa, the Mach reflection occurs ahead of the injector. The interaction between the incoming air and the injection flow becomes much more complex, and the fuel/air mixing is strongly enhanced. The Mach reflection oscillates and results in a strong fluctuation in the combustor wall pressure. At the fuel injection pressure of 1.5MPa, the flow inside the combustor becomes nearly choked and the Mach reflection is displaced forward. The leading shock wave moves slowly toward the inlet, and eventually causes the combustor-upstart due to the thermal choking. The cavity appears to play a secondary role in driving the flow unsteadiness, in spite of its influence on the fuel/air mixing and flame evolution. Further investigation is necessary on this issue. The present study features detailed resolution of the flow and flame dynamics in the combustor, which was not typically available in most of the previous works. In particular, the oscillatory flow characteristics are captured at a scale sufficient to identify the underlying physical mechanisms. Much of the flow unsteadiness is not related to the cavity, but rather to the intrinsic unsteadiness in the flowfield, as also shown experimentally by Ben-Yakar et al. [6], The interactions between the unsteady flow and flame evolution may cause a large excursion of flow oscillation. The work appears to be the first of its kind in the numerical study of combustion oscillations in a supersonic combustor, although a similar phenomenon was previously reported experimentally. A more comprehensive discussion will be given in the final paper presented at the colloquium.

  • PDF

Petrology of the Chaeyaksan basaltic rocks and application of hornblende geobarometer (채약산 현무암질암류의 암석학적인 특징 및 각섬석 지질압력계의 적용)

  • 김상욱;황상구;양판석;이윤종;고인석
    • The Journal of the Petrological Society of Korea
    • /
    • v.8 no.2
    • /
    • pp.92-105
    • /
    • 1999
  • The Cretaceous Chaeyaksan basaltic rocks consist mainly of basaltic tuffs intercalating three layers of basalt. Stratigraphically, the rocks are located between the upper Songnaedong Formation and the lower Geoncheonri Formation and contain plagioclase, augite, hornblende, and a few olivine phenocrysts. Geochemically, they show calc-alkaline characteristics in some immobile element content, but show the alkaline suite feature in the mobile major element composition. The basalts are widely spilitized but some of them is altered to shoshonitic rocks with more calcic plagioclase, calcite, and chlorite, and adularia veinlets are common in the rocks. It is supposed that the post-eruption alteration of the rocks is done through alkali-replacement by hydrothermal solution or vapor rather than by low grade regional metamorphism. It is considered that A1 in hornblende will be available for estimating the pressure of the pre-eruption magma in the reservoir although the plagioclase of the rocks are highly albitized. The crystallization pressure was calculated as 5.7Kb by the equation of Johnson and Rutherford(l989) incorporating of the effect of overestimate of .41T in hornblende in the case of quartz-free rocks. Application of the estimated temperature, pressure and the constituent of phenocrysts of the rocks to the experimental P-T phase diagram for basalts established by Green(1982) indicates the crystallization course and succession of growth of the phenocrysts during of rising and cooling of the magma reservoir; augite + augite and olivine + augite, olivine, and hornblende -+ augite and hornblende+ augite, hornblende, and plagioclase. Such evolution course of the magma may include crystal fractionation by the phenocrysts crystallization and contamination by country rock in lower crust.

  • PDF

A Geomorphological Classification System to Chatacterize Ecological Processes over the Landscape (생태환경 특성 파악을 위한 지형분류기법의 개발)

  • Park Soo-Jin
    • Journal of the Korean Geographical Society
    • /
    • v.39 no.4
    • /
    • pp.495-513
    • /
    • 2004
  • The shape of land surface work as a cradle for various environmental processes and human activities. As spatially distributed process modelings become increasing important in current research communities, a classification system that delineates land surface into characteristic geomorphological units is a pre-requisite for sustainable land use planning and management. Existing classification systems are either morphometric or generic, which have limitations to characterize continuous ecological processes over the landscape. A new classification system was developed to delineate the land surface into different geomorphological units from Digital Elevation Models(DEMs). This model assumes that there are pedo-geomorphological units in which distinct sets of hydrological, pedological, and consequent ecological processes occur. The classification system first divides the whole landsurface into eight soil-landscape units. Possible energy and material nows over the land surface were interpreted using a continuity equation of mass flow along the hillslope, and subsequently implemented in terrain analysis procedures. The developed models were tested at a 12$\textrm{km}^2$ area in Yangpyeong-gun, Kyeongi-do, Korea. The method proposed effectively delineates land surface into distinct pedo-geomorphological units, which identify the geomorphological characteristics over a large area at a low cost. The delineated landscape units mal provide a basic information for natural resource survey and environmental modeling practices.

A Historical, Mathematical, Psychological Analysis on Ratio Concept (비 개념에 대한 역사적, 수학적, 심리적 분석)

  • 정은실
    • School Mathematics
    • /
    • v.5 no.4
    • /
    • pp.421-440
    • /
    • 2003
  • It is difficult for the learner to understand completely the ratio concept which forms a basis of proportional reasoning. And proportional reasoning is, on the one hand, the capstone of children's elementary school arithmetic and, the other hand, it is the cornerstone of all that is to follow. But school mathematics has centered on the teachings of algorithm without dealing with its essence and meaning. The purpose of this study is to analyze the essence of ratio concept from multidimensional viewpoint. In addition, this study will show the direction for improvement of ratio concept. For this purpose, I tried to analyze the historical development of ratio concept. Most mathematicians today consider ratio as fraction and, in effect, identify ratios with what mathematicians called the denominations of ratios. But Euclid did not. In line with Euclid's theory, ratio should not have been represented in the same way as fraction, and proportion should not have been represented as equation, but in line with the other's theory they might be. The two theories of ratios were running alongside each other, but the differences between them were not always clearly stated. Ratio can be interpreted as a function of an ordered pair of numbers or magnitude values. A ratio is a numerical expression of how much there is of one quantity in relation to another quantity. So ratio can be interpreted as a binary vector which differentiates between the absolute aspect of a vector -its size- and the comparative aspect-its slope. Analysis on ratio concept shows that its basic structure implies 'proportionality' and it is formalized through transmission from the understanding of the invariance of internal ratio to the understanding of constancy of external ratio. In the study, a fittingness(or comparison) and a covariation were examined as the intuitive origins of proportion and proportional reasoning. These form the basis of the protoquantitative knowledge. The development of sequences of proportional reasoning was examined. The first attempts at quantifying the relationships are usually additive reasoning. Additive reasoning appears as a precursor to proportional reasoning. Preproportions are followed by logical proportions which refer to the understanding of the logical relationships between the four terms of a proportion. Even though developmental psychologists often speak of proportional reasoning as though it were a global ability, other psychologists insist that the evolution of proportional reasoning is characterized by a gradual increase in local competence.

  • PDF

Three-Phase Eulerian Computational Fluid Dynamics (CFD) of Air-Water-Oil Separator with Coalescer (유적 합체기가 포함된 공기-물-기름 분리 공정에 대한 3상 Eulerian 전산유체역학)

  • Lim, Young-Il;Le, Thuy T.;Park, Chi-Kyun;Lee, Byung-Don;Kim, Byung-Gook;Lim, Dong-Ha
    • Korean Chemical Engineering Research
    • /
    • v.55 no.2
    • /
    • pp.201-213
    • /
    • 2017
  • Water is removed from crude oil containing water by using oil separator. This study aims to develop a three-dimensional (3D) Eulerian computational fluid dynamics (CFD) model to predict the separation efficiency of air-water-oil separator. In the incompressible, isothermal and unsteady-state CFD model, air is defined as continuous phase, and water and oil are given as dispersed phase. The momentum equation includes the drag force, lift force and resistance force of porous media. The standard k-${\varepsilon}$ model is used for turbulence flow. The exit pressures of water and oil play an important role in determining the liquid level of the oil separator. The exit pressures were identified to be 6.3 kPa and 5.1 kPa for water and oil, respectively, to keep a liquid level of 25 cm at a normal operating condition. The time evolution of volume fractions of air, water and oil was investigated. The settling velocities of water and oil along the longitudinal separator distance were analyzed, when the oil separator reached a steady-state. The oil separation efficiency obtained from the CFD model was 99.85%, which agreed well with experimental data. The relatively simple CFD model can be used for the modification of oil separator structure and finding optimal operating conditions.

Characteristics of Water Level and Velocity Changes due to the Propagation of Bore (단파의 전파에 따른 수위 및 유속변화의 특성에 관한 연구)

  • Lee, Kwang Ho;Kim, Do Sam;Yeh, Harry
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.5B
    • /
    • pp.575-589
    • /
    • 2008
  • In the present work, we investigate the hydrodynamic behavior of a turbulent bore, such as tsunami bore and tidal bore, generated by the removal of a gate with water impounded on one side. The bore generation system is similar to that used in a general dam-break problem. In order to the numerical simulation of the formation and propagation of a bore, we consider the incompressible flows of two immiscible fluids, liquid and gas, governed by the Navier-Stokes equations. The interface tracking between two fluids is achieved by the volume-of-fluid (VOF) technique and the M-type cubic interpolated propagation (MCIP) scheme is used to solve the Navier-Stokes equations. The MCIP method is a low diffusive and stable scheme and is generally extended the original one-dimensional CIP to higher dimensions, using a fractional step technique. Further, large eddy simulation (LES) closure scheme, a cost-effective approach to turbulence simulation, is used to predict the evolution of quantities associated with turbulence. In order to verify the applicability of the developed numerical model to the bore simulation, laboratory experiments are performed in a wave tank. Comparisons are made between the numerical results by the present model and the experimental data and good agreement is achieved.

Incremental Ensemble Learning for The Combination of Multiple Models of Locally Weighted Regression Using Genetic Algorithm (유전 알고리즘을 이용한 국소가중회귀의 다중모델 결합을 위한 점진적 앙상블 학습)

  • Kim, Sang Hun;Chung, Byung Hee;Lee, Gun Ho
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.7 no.9
    • /
    • pp.351-360
    • /
    • 2018
  • The LWR (Locally Weighted Regression) model, which is traditionally a lazy learning model, is designed to obtain the solution of the prediction according to the input variable, the query point, and it is a kind of the regression equation in the short interval obtained as a result of the learning that gives a higher weight value closer to the query point. We study on an incremental ensemble learning approach for LWR, a form of lazy learning and memory-based learning. The proposed incremental ensemble learning method of LWR is to sequentially generate and integrate LWR models over time using a genetic algorithm to obtain a solution of a specific query point. The weaknesses of existing LWR models are that multiple LWR models can be generated based on the indicator function and data sample selection, and the quality of the predictions can also vary depending on this model. However, no research has been conducted to solve the problem of selection or combination of multiple LWR models. In this study, after generating the initial LWR model according to the indicator function and the sample data set, we iterate evolution learning process to obtain the proper indicator function and assess the LWR models applied to the other sample data sets to overcome the data set bias. We adopt Eager learning method to generate and store LWR model gradually when data is generated for all sections. In order to obtain a prediction solution at a specific point in time, an LWR model is generated based on newly generated data within a predetermined interval and then combined with existing LWR models in a section using a genetic algorithm. The proposed method shows better results than the method of selecting multiple LWR models using the simple average method. The results of this study are compared with the predicted results using multiple regression analysis by applying the real data such as the amount of traffic per hour in a specific area and hourly sales of a resting place of the highway, etc.

Changes of Microbial Activity and Physicochemical Environment during Composting of Papermill Sludge in a Pilot Plant (제지슬럿지의 퇴비화 과정 중 미생물활성 및 이화학적 환경변화)

  • Chung, Young-Ryun;Chung, Man-Hoon;Han, Shin-Ho;Oh, Say-Kyun
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.3 no.2
    • /
    • pp.79-89
    • /
    • 1995
  • Changes of microbial activity and physicochemical environment during composting of papermill sludge(PMS) in the pilot plant equipped with an agitated bed reactor were monitored for establishing the efficient composting system. Microbial activity determined as the evolution of $CO_2$ increased for the first 10 days after introduction of PMS to the reactor and decreased thereafter. Population changes of microorganisms in the reactor-PMS were not typical as in windrow system. The ratio of thermophilic bacteria to mesophilic bacteria, however, increased slowly even 23 days after introduction. Temperature of PMS increased rapidly from the first day and reached $62^{\circ}C$ at 7 days after introduction and decreased slowly thereafter. The acidity of PMS was pH 6.8 initially, increased to pH 8.0 after 7 days and decreased to pH 7.4 after 23 days. Redox potential(Eh) of PMS was -320mV at the beginning of composting, but it was increased with time to reach -15mV after 23 days composting. However, Eh of PMS pre-sterilized before measurement was average 50mV, regardless of composting periods indicating the major role of microorganisms during composting process. Water content of PMS was 67% initially and decreased to about 50% after 23 days composting in the reactor. Less than 13 days-old compost inhibited growth of radish in the container mixture with bed soil. Based on statistical analysis of microbial and physicochemical parameters of PMS during composting, an equation was developed for determining compost maturity. A number of experiments using various organic wastes are required before application of the formular to the practical use.

  • PDF

Modeling Brand Equity for Lifestyle Brand Extensions: A Strategic Approach into Generation Y vs. Baby Boomer (생활방식품패확장적품패자산건모(生活方式品牌扩张的品牌资产建模): 침대Y세대화영인조소비자적전략로경(针对Y世代和婴儿潮消费者的战略路径))

  • Kim, Eun-Young;Brandon, Lynn
    • Journal of Global Scholars of Marketing Science
    • /
    • v.20 no.1
    • /
    • pp.35-48
    • /
    • 2010
  • Today, the fashion market challenged by a maturing retail market needs a new paradigm in the "evolution of brand" to improve their comparative advantages. An important issue in fashion marketing is lifestyle brand extension with a specific aim to meet consumers' specific needs for their changing lifestyle. For fashion brand extensions into lifestyle product categories, Gen Y and Baby Boomer are emerging as "prospects"-Baby Boomers who are renovating their lifestyle, and generation Y experiencing changes in their life stage-with demands for buying new products. Therefore, it is imperative that apparel companies pay special attention to the consumer cohort for brand extension to create and manage their brand equity in a new product category. The purposes of this study are to (a) evaluate brand equity between parent and extension brands; (b) identify consumers' perceived marketing elements for brand extension; and (c) estimate a structural equation model for examining causative relationship between marketing elements and brand equity for brand extensions in lifestyle product category including home fashion items for the selected two groups (e.g., Gen Y, and Baby boomer). For theoretical frameworks, this study focused on the traditional marketing 4P's mix to identify what marketing element is more importantly related to brand extension equity for this study. It is assumed that comparable marketing capability can be critical to establish "brand extension equity", leads to successfully entering the new categories. Drawing from the relevant literature, this study developed research hypotheses incorporating brand equity factors and marketing elements by focusing on the selected consumers (e.g., Gen Y, Baby Boomer). In the context of brand extension in the lifestyle products, constructs of brand equity consist of brand awareness/association, brand perceptions (e.g., perceived quality, emotional value) and brand resonance adapted from CBBE factors (Keller, 2001). It is postulated that the marketing elements create brand extension equity in terms of brand awareness/association, brand perceptions by the brand extension into lifestyle products, which in turn influence brand resonance. For data collection, the sample was comprised of Korean female consumers in Gen Y and Baby Boomer consumer categories who have a high demand for lifestyle products due to changing their lifecycles. A total of 651 usable questionnaires were obtained from female consumers of Gen Y (n=326) and Baby Boomer (n=325) in South Korea. Structural and measurement models using a correlation matrix was estimated using LISREL 8.8. Findings indicated that perceived marketing elements for brand extension consisted of three factors: price/store image, product, and advertising. In the model of Gen Y consumers, price/store image had a positive effect on brand equity factors (e.g., brand awareness/association, perceived quality), while product had positive effect on emotional value in the brand extensions; and the brand awareness/association was likely to increase the perceived quality and emotional value, leading to brand resonance for brand extensions in the lifestyle products. In the model of Baby Boomer consumers, price/store image had a positive effect on perceived quality, which created brand resonance of brand extension; and product had a positive effect on perceived quality and emotional value, which leads to brand resonance for brand extension in the lifestyle products. However, advertising was negatively related to brand equity for both groups. This study provides an insight for fashion marketers in developing a successful brand extension strategy, leading to a sustainable competitive advantage. This study complements and extends prior works in the brand extension through critical factors of marketing efforts that affect brand extension success. Findings support a synergy effect on leveraging of fashion brand extensions (Aaker and Keller, 1990; Tauber, 1988; Shine et al., 2007; Pitta and Katsanis, 1995) in conjunction with marketing actions for entering into the new product category. Thus, it is recommended that marketers targeting both Gen Y and Baby Boomer can reduce marketing cost for entering the new product category (e.g., home furnishings) by standardized marketing efforts; fashion marketers can (a) offer extension lines with premium ranges of price; (b) place an emphasis on upscale features of store image positioning by a retail channel (e.g., specialty department store) in Korea, and (c) combine apparel with lifestyle product assortments including innovative style and designer’s limited editions. With respect to brand equity, a key to successful brand extension is consumers’ brand awareness or association that ensures brand identity with new product category. It is imperative for marketers to have knowledge of what contributes to more concrete associations in a market entry into new product categories. For fashion brands, a second key of brand extension can be a "luxury" lifestyle approach into new product categories, in that higher price or store image had impact on perceived quality that established brand resonance. More importantly, this study increases the theoretical understanding of brand extension and suggests directions for marketers as they establish marketing program at Gen Y and Baby Boomers.