• Title/Summary/Keyword: Evolution Equation

Search Result 284, Processing Time 0.023 seconds

Vaporization Characteristics of Dodecane Fuel Droplet in Supercritical Condition (도데케인 연료액적의 초임계 상태 기화 특성)

  • Ko, J.B.;Lee, K.H.;Koo, J.Y.;Jeon, C.S.;Moon, H.J.
    • Journal of ILASS-Korea
    • /
    • v.9 no.3
    • /
    • pp.8-14
    • /
    • 2004
  • Characteristics of droplet vaporization at high ambient pressures and temperatures which are supercritical conditions is studied numerically by formulating one dimensional vaporization model in liquid dodecane and air. Modified Soave-Redlich-Kwong state equation is used to condider real gas effect. Non-ideal behavior of properties at near critical and supercritical conditions is considered in the high pressure condition. Characteristic spatial distribution of properties with various conditions of pressure and temperature is evaluated in order to understand vaporizing evolution.

  • PDF

A Study of Localization of the Adiabatic Shear Band with Numerical Method (단열전단변형에서 국부화에 대한 수치해석적 연구)

  • 이병섭
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.03b
    • /
    • pp.225-228
    • /
    • 1999
  • In a plastically deformed body the formation of a shear band is widely observed in the engineering materials during rapidly forming process for a thermally rate-sensitive material. The localized shear bond stems from evolution of a narrow region in which intensive plastic flow occurs. The shear band often plays as a precursor of the ductile fracture during a forming process. The objectives of this study are to investigate the localization behaivor by using numerical method thus predict the failure. In this work the implicit finite difference scheme is preformed due to the ease of covergence and the numerical stability. This study is based on an analysised material with hardening as well as thermally softening behavior which includes isotropy strain hardening. Furthermore this paper suggests that an anticipated and suggested a kinematic hardening constitutive equation be requried to predicte a more accurate strain level wherein a shear band occurs.

  • PDF

The grain size prediction of Al-5wt%Mg alloy by FEM (유한요소법을 이용한 Al-5%Mg 합금의 미세조직 크기예측)

  • 조종래
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.03b
    • /
    • pp.249-252
    • /
    • 1999
  • A numerical analysis was perfomed to predict flow curves and dynamic recrystallization behaviors of Al-5%Mg alloy on the basis of results of hot compression tests. The hot compression tests were carried out in the ranges of 350-50$0^{\circ}C$ and 5$\times${{{{ {10 }^{-3 } }}}}~3$\times${{{{ {10 }^{0 } }}}}/sec to obtain the Zener-Hollmon parameter. In the modelling equation the effects os strain hardening and dynamic recrystallization were taken into consideration. A model for predicting the evolution of microstructure in Al-5%Mg alloy during thermomechanical processing was developed in terms of dynamic recrystallization phenomena, The microstructure model was combined with finite element modeling(FEM) to predict microstructure development Model predictions showed good agreement with microstructures obtained in compression tests.

  • PDF

MASS DISTRIBUTION IN THE CENTRAL FEW PARSECS OF OUR GALAXY

  • Oh, Seung-Kyung;S. Kim, Sung-Soo;Figer, Donald F.
    • Journal of The Korean Astronomical Society
    • /
    • v.42 no.2
    • /
    • pp.17-26
    • /
    • 2009
  • We estimate the enclosed mass profile in the central 10 pc of the Milky Way by analyzing the infrared photometry and the velocity observations of dynamically relaxed stellar population in the Galactic center. HST/NICMOS and Gemini Adaptive Optics images in the archive are used to obtain the number density profile, and proper motion and radial velocity data were compiled from the literature to find the velocity dispersion profile assuming a spherical symmetry and velocity isotropy. From these data, we calculate the the enclosed mass and density profiles in the central 10 pc of the Galaxy using the Jeans equation. Our improved estimates can better describe the exact evolution of the molecular clouds and star clusters falling down to the Galactic center, and constrain the star formation history of the inner part of the Galaxy.

Active Flow Control Using the Synthetic Jet Actuator (Synthetic Jet Actuator를 이용한 능동 유동 제어)

  • Noh Jongmin;Kim Chongam
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.04a
    • /
    • pp.65-69
    • /
    • 2005
  • Curretly, the development of MEMS(Micro Electronic Mechanical System) technology awakes many research's interest for the aerodynamics. This work presents the development of a compact synthetic jet actuator for flow separation control at the flat plate. The formation and evolution of fluidic actuators based on synthetic jet technology are investigated using Reynolds-Averaged Navier-Stokes equations. Also, 2-Dimensional, unsteady, incompressible Navier-Stokes equation solver with single partitioning method for Multi-Block grid to analyze and a modeled boundary condition in developed fo. the synthetic jet actuator. Both laminar and turbulent jets are investigated. Results show very good agreement with experimental measurements. A jet flow develops, even though no net mass flow is introduced. Pair of counter-rotating vortices are observed near the jet exit as are observed in the experiments.

  • PDF

An Analysis of the Flow Characteristics in the Tip Clearance of Axial Flow Rotor (축류 회전차 팁 틈새에서의 유동특성 해석)

  • 정재구;이명호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.5
    • /
    • pp.735-745
    • /
    • 2004
  • A linear cascade of NACA 65-1810 profiles are investigated for tip leakage flow characteristics. and calculation results are compared with experimental result. STAR-CD commercial code was used to solve the three dimensional incompressible Navier-Stokes equation that was adopted for steady flow and high Reynolds $\kappa$- $\varepsilon$turbulent model. Numerical calculation of a linear cascade is carried out to investigate effect of tip clearance on pitchwise variations of velocity Profiles. and static pressure distributions on the blade surface at spanwise positions. In case of evolution of tip vortex core location. tip vortex geometry and static pressure at the center of the tip vortex core compared with experimental results. Calculation results are agreed well with the experimental data, and validated. The static pressure losses by tip leakage flow at 2% tip clearance were more than those at 1% tip clearance.

Simulation of particle filtration by Brownian dynamics (Brownian dynamics 를 이용한 입자 포집 모사)

  • Bang, Jong-Geun;Yoon, Yoong-Sup
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1922-1927
    • /
    • 2008
  • In the present study, deposition of discrete and small particles, which diameter is less than $1{\mu}m$, on a filter element was simulated by stochastic method. Trajectory of each particle was numerically solved by Langevin equation and Brownian random motion was treated by Brownian dynamics. Lattice Boltzmann method (LBM) was used to solve flow field around the filter collector and deposit layer. Interaction between flow field and deposit layer was obtained from a converged solution from an inner-loop calculation. Simulation method is properly validated and collection efficiency due to different filtration parameters are examined and discussed. Morphology of deposit layer and its evolution was visualized in terms of the particle size. The particle loaded effect on collection efficiency was also discussed.

  • PDF

CONTROLLABILITY OF LINEAR AND SEMILINEAR CONTROL SYSTEMS

  • Jeong, Jin-Mun;Park, Jong-Yeoul;Park, Chul-Yun
    • Bulletin of the Korean Mathematical Society
    • /
    • v.37 no.2
    • /
    • pp.361-376
    • /
    • 2000
  • Our purpose is to seek that the reachable set of the semilinear system $\frac{d}{dt}x(t){\;}={\;}Ax(t){\;}+{\;}f(t,x(t)){\;}+{\;}Bu(t)$ is equivalent to that of its corresponding to linear system (the case where f=0).Under the assumption that the system of generalized eigenspaces of A is complete, we will show that the reachable set corresponding to the linear system is independent of t in case A generates $C_0-semigroup$. An illustrative example for retarded system with time delay is given in the last section.

  • PDF

Computational Validation of Supersonic Combustion Phenomena associated with Hypersonic Propulsion (극초음속 추진과 관련된 초음속 연소 현상의 수치적 검증)

  • Choi Jeong-Yeol;Jeung In-Seuck;Yoon Youngbin
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1998.05a
    • /
    • pp.117-122
    • /
    • 1998
  • A numerical study is carried out to investigate the transient process of combustion phenomena associated with hypersonic propulsion devices. Reynolds averaged Navier-Stokes equations for reactive flows are used as governing equations with a detailed chemistry mechanism of hydrogen-air mixture and two-equation SST turbulence modeling. The governing equations are discretized by a high order accurate upwind scheme and solved in a fully coupled manner with a fully implicit time accurate method. At first, oscillating shock-induced combustion is analyzed and the comparison with experimental result gives the validity of present computational modeling. Secondly, the model ram accelerator experiment was simulated and the results show the detailed transient combustion mechanisms. Thirdly, the evolution of oblique detonation wave is simulated and the result shows transient and final steady state behavior at off-stability condition. Finally, shock wave/boundary layer interaction in combustible mixture is studied and the criterion of boundary layer flame and oblique detonation wave is identified.

  • PDF

Transported PDF Model for Turbulent Nonpremixed Flames (수송 확률밀도함수모델을 이용한 비예혼합 난류화염장 해석)

  • Lee, Jeong-Won;Seok, Joon-Ho;Kim, Yong-Mo
    • Journal of the Korean Society of Combustion
    • /
    • v.14 no.2
    • /
    • pp.32-41
    • /
    • 2009
  • The transported probability density function model combined with the consistent finite volume (FV) method has been applied to simulate the turbulent bluff-body reacting flows. To realistically account for the non-isotropic turbulence effects on the turbulent bluff-body reacting flows, the present PDF transport approach is based on the joint velocity- turbulent frequency-composition PDF formulation. The evolution of the fluctuating velocity of a particle is modeled by a simplified Langevin equation and the particle turbulence frequency is represented by the modified Jayesh - Pope model. Effects of molecular diffusion are represented by the interaction by exchange with the mean (IEM) mixing model. To validate this hybrid FV/PDF transport model, the numerical results are compared with experimental data for the turbulent bluff-body reacting flows.

  • PDF