DOI QR코드

DOI QR Code

MASS DISTRIBUTION IN THE CENTRAL FEW PARSECS OF OUR GALAXY

  • Oh, Seung-Kyung (Dept. of Astronomy & Space Science, Kyung Hee University) ;
  • S. Kim, Sung-Soo (Dept. of Astronomy & Space Science, Kyung Hee University) ;
  • Figer, Donald F. (Chester F. Carlson Center for Imaging Science, Rochester Institute of Technology)
  • Published : 2009.04.30

Abstract

We estimate the enclosed mass profile in the central 10 pc of the Milky Way by analyzing the infrared photometry and the velocity observations of dynamically relaxed stellar population in the Galactic center. HST/NICMOS and Gemini Adaptive Optics images in the archive are used to obtain the number density profile, and proper motion and radial velocity data were compiled from the literature to find the velocity dispersion profile assuming a spherical symmetry and velocity isotropy. From these data, we calculate the the enclosed mass and density profiles in the central 10 pc of the Galaxy using the Jeans equation. Our improved estimates can better describe the exact evolution of the molecular clouds and star clusters falling down to the Galactic center, and constrain the star formation history of the inner part of the Galaxy.

Keywords

References

  1. Alexander, T., 1999, The Distribution of Stars near the Supermassive Black Hole in the Galactic Center, ApJ, 527, 835 https://doi.org/10.1086/308129
  2. Christopher, M. H., Scoville, N. Z., Stolovy, S. R., & Yun, M. S., 2005, HCN and $HCO^+$ Observations of the Galactic Circumnuclear Disk, ApJ, 622, 346 https://doi.org/10.1086/427911
  3. Figer, D. F., et al., 2003, High-Precision Stellar Radial Velocities in the Galactic Center, ApJ, 599, 1139 https://doi.org/10.1086/379627
  4. Figer, D. F., Rich, R. M., Kim, S. S., Morris, M., & Serabyn, E., 2004, An Extended Star Formation History for the Galactic Center from Hubble Space Telescope NICMOS Observations, ApJ, 601, 319 https://doi.org/10.1086/380392
  5. Gerhard, O., 2001, The Galactic Center HE I Stars: Remains of a Dissolved Young Cluster?, ApJ, 546, L39 https://doi.org/10.1086/318054
  6. Ghez, A. M., et al., 2008, Measuring Distance and Properties of the Milky Way's Central Supermassive Black Hole with Stellar Orbits, ApJ, 689, 1044 https://doi.org/10.1086/592738
  7. Genzel, R., Thatte, N., Krabbe, A., Kroker, H., & Tacconi- Garman, L. E., 1996, The Dark Mass Concentration in the Central Parsec of the Milky Way, ApJ, 472,153 https://doi.org/10.1086/178051
  8. Genzel, R., Pichon, C., Eckart, A., Gerhard, O. E., & Ott, T., 2000, Stellar dynamics in the Galactic Centre: proper motions and anisotropy, MNRAS, 317, 348 https://doi.org/10.1046/j.1365-8711.2000.03582.x
  9. Gillessen, S., Eisenhauer, F., Trippe, S., Alexander, T., Genzel, R., Martins, F., & Ott, T., 2009, Monitoring Stellar Orbits Around the Massive Black Hole in the Galactic Center, ApJ, 692, 1075 https://doi.org/10.1088/0004-637X/692/2/1075
  10. Jackson, J. M., et al., 1993, Neutral gas in the central 2 parsecs of the Galaxy, ApJ, 402, 173 https://doi.org/10.1086/172120
  11. Kim, S. S. & Morris, M., 2003, Dynamical Friction on Star Clusters near the Galactic Center, ApJ, 597, 312 https://doi.org/10.1086/378347
  12. Kim, S. S., Figer, D. F., & Morris, M., 2004, Dynamical Friction on Galactic Center Star Clusters with an Intermediate-Mass Black Hole, ApJ, 607, L123 https://doi.org/10.1086/422032
  13. Kim, S. S., Figer, D. F., Lee, M. G., & Oh, S., 2005, Theoretical Isochrones with Extinction in the K Band, PASP, 117, 445 https://doi.org/10.1086/429655
  14. Krabbe, A., et al., 1995, The Nuclear Cluster of the Milky Way: Star Formation and Velocity Dispersion in the Central 0.5 Parsec, ApJ 447, L95
  15. Lindqvist, M., Habing, H. J., & Winnberg, A., 1992, OH/IR stars close to the Galactic Centre. II - Their spatial and kinematic properties and the mass distribution within 5-100 PC from the galactic centre, A&A, 259, 118
  16. Lu, J. R., Ghez, A. M., Hornstein, S. D., Morris, M. R., Becklin, E. E., & Matthews, K., 2009, A Disk of Young Stars at the Galactic Center as Determined by Individual Stellar Orbits, ApJ, 690, 1463L https://doi.org/10.1088/0004-637X/690/2/1463
  17. Morris, M., 1993, Massive star formation near the Galactic center and the fate of the stellar remnants, ApJ, 408, 496 https://doi.org/10.1086/172607
  18. Nayakshin, S., Cuadra, J., & Springel, V. 2007, MNRAS, 379, 21 https://doi.org/10.1111/j.1365-2966.2007.11938.x
  19. Paumard, T., et al., 2006, The Two Young Star Disks in the Central Parsec of the Galaxy: Properties, Dynamics, and Formation, ApJ, 643, 1011 https://doi.org/10.1086/503273
  20. Press, W. H., Teukolsky, S. A., Vetterling, W. T., & Flannery, B. P., 1992, Numerical Recipes in FORTRAN. The Art of Scientific Computing, 2nd (Cambridge: Univ. Press)
  21. Rieke, G. H., Rieke, M. J., & Paul, A. E., 1989, Origin of the excitation of the galactic center, ApJ, 336, 752 https://doi.org/10.1086/167047
  22. Saha, P., Bicknell, G. V., & McGregor, P. J., 1996, ApJ, 467, 636 https://doi.org/10.1086/177639
  23. Schmitt, J. 1995, Diploma thesis, Ludwig-Maximilian University, Munich
  24. Schodel, R., et al., 2007, The structure of the nuclear stellar cluster of the Milky Way, A&A, 469, 125 https://doi.org/10.1051/0004-6361:20065089
  25. Stetson, P., 1987, DAOPHOT - A computer program for crowded-field stellar photometry, PASP, 99, 191 https://doi.org/10.1086/131977
  26. Yusef-Zadeh, F., Braatz, J., & Wardle, M., & Roberts, D., 2008, Massive Star Formation in the Molecular Ring Orbiting the Black Hole at the Galactic Center, ApJ, 683, L147 https://doi.org/10.1086/591731
  27. Zhu, Q., Kudritzki, R. P., Figer, D. F., Najarro, F., & Merritt, D., 2008, Radial Velocities of Stars in the Galactic Center, ApJ, 681, 1254 https://doi.org/10.1086/588135

Cited by

  1. LONG-TERM EVOLUTION OF MASSIVE BLACK HOLE BINARIES. IV. MERGERS OF GALAXIES WITH COLLISIONALLY RELAXED NUCLEI vol.744, pp.1, 2012, https://doi.org/10.1088/0004-637X/744/1/74
  2. THE ROLE OF THE KOZAI–LIDOV MECHANISM IN BLACK HOLE BINARY MERGERS IN GALACTIC CENTERS vol.828, pp.2, 2016, https://doi.org/10.3847/0004-637X/828/2/77
  3. The nuclear cluster of the Milky Way: our primary testbed for the interaction of a dense star cluster with a massive black hole vol.31, pp.24, 2014, https://doi.org/10.1088/0264-9381/31/24/244007
  4. High-velocity stars as a result of encounters between stars and massive binary black holes in galactic nuclei vol.61, pp.1, 2017, https://doi.org/10.1134/S1063772916120076
  5. Large scale kinematics and dynamical modelling of the Milky Way nuclear star cluster vol.570, 2014, https://doi.org/10.1051/0004-6361/201423777
  6. THE HIGH-DENSITY IONIZED GAS IN THE CENTRAL PARSEC OF THE GALAXY vol.723, pp.2, 2010, https://doi.org/10.1088/0004-637X/723/2/1097
  7. DISSIPATIONLESS FORMATION AND EVOLUTION OF THE MILKY WAY NUCLEAR STAR CLUSTER vol.750, pp.2, 2012, https://doi.org/10.1088/0004-637X/750/2/111
  8. Spin evolution of supermassive black holes and galactic nuclei vol.86, pp.10, 2012, https://doi.org/10.1103/PhysRevD.86.102002
  9. ON THE DISTRIBUTION OF STELLAR REMNANTS AROUND MASSIVE BLACK HOLES: SLOW MASS SEGREGATION, STAR CLUSTER INSPIRALS, AND CORRELATED ORBITS vol.794, pp.2, 2014, https://doi.org/10.1088/0004-637X/794/2/106
  10. TIDAL BREAKUP OF BINARY STARS AT THE GALACTIC CENTER. II. HYDRODYNAMIC SIMULATIONS vol.731, pp.2, 2011, https://doi.org/10.1088/0004-637X/731/2/128
  11. ORIGIN AND GROWTH OF NUCLEAR STAR CLUSTERS AROUND MASSIVE BLACK HOLES vol.763, pp.1, 2013, https://doi.org/10.1088/0004-637X/763/1/62
  12. CO-EVOLUTION OF GALACTIC NUCLEI AND GLOBULAR CLUSTER SYSTEMS vol.785, pp.1, 2014, https://doi.org/10.1088/0004-637X/785/1/71
  13. DYNAMICAL FRICTION AROUND SUPERMASSIVE BLACK HOLES vol.745, pp.1, 2012, https://doi.org/10.1088/0004-637X/745/1/83
  14. СВЕРХСКОРОСТНЫЕ ЗВЕЗДЫ КАК РЕЗУЛЬТАТ СБЛИЖЕНИЙ ЗВЕЗД С МАССИВНЫМИ ДВОЙНЫМИ ЧЕРНЫМИ ДЫРАМИ В ЯДРАХ ГАЛАКТИК pp.1, 2017, https://doi.org/10.7868/S0004629916120082
  15. Galactic rotation curves versus ultralight dark matter: Implications of the soliton-host halo relation vol.98, pp.8, 2018, https://doi.org/10.1103/PhysRevD.98.083027