• Title/Summary/Keyword: Evergreen broad leaved tree

Search Result 74, Processing Time 0.024 seconds

Vegetation Characteristics in the Jeopdo(Island), Jindo-gun (진도군 접도의 식생 특성)

  • Kang, Hyun-Mi
    • Korean Journal of Environment and Ecology
    • /
    • v.34 no.1
    • /
    • pp.27-41
    • /
    • 2020
  • The purpose of this study was to survey vegetation characteristics of Jeopdo (island) for the construction of a database. We installed and analyzed 52 plots with 100㎡ quadrat to investigate the vegetation characteristics. The community classification based on TWINSPAN found seven categories of vegetation communities in the surveyed region: Pinus thunbergii-Pinus densiflora community, Pinus densiflora-Quercus serrata community, Carpinus turczaninowii-Quercus variabilis community, Carpinus turczaninowii-Quercus acutissima community, Quercus variabilis-Carpinus turczaninowii community, Castanopsis sieboldii community, and Actinodaphne lancifolia-Camellia japonica community. The vegetation in Jeopdo is largely composed of evergreen conifer trees community (communities I and II), Carpinus turczaninowii-deciduous broad-leaved trees such as Quercus spp. community (communities III, IV, and V), and evergreen broad-leaved trees community (communities VI and VII). The evergreen conifer tree (Quercus serrata) community is currently competing with Pinus densiflora and Pinus thunbergii. The current state is expected to continue due to the lack of forces, such as Castanopsis sieboldii and Actinodaphne lancifolia, in the succession middle stage and climax stage. The current state of Carpinus turczaninowii-deciduous broad-leaved trees such as Quercus spp. community is expected to last for a long time due to slow vegetation development because of soil conditions. The evergreen broad-leaved trees community is transforming from the initial stage of Pinus densiflora and Pinus thunbergii through the stage in Quercus serrata to Castanopsis sieboldii and Actinodaphne lancifolia. The overall ages of the specimens were similar, and the oldest tree was the 59-year old Castanopsis sieboldii. The correlation analysis of major species showed a high positive correlation between Pinus thunbergii and Eurya japonica, Pinus densiflora and Fraxinus sieboldiana, and Actinodaphne lancifolia and Camellia japonica and a high negative correlation between Pinus densiflora and Carpinus turczaninowii and Carpinus turczaninowii and Eurya japonica.

The Vegetation and Ecological Characteristics of Warm Temperate Forest in Dalma Mountain, Haenam (해남 달마산 상록활엽수림 식생과 생태적 특성)

  • Cho, Ji-Woong;Lee, Kye-Han
    • Journal of Environmental Science International
    • /
    • v.31 no.2
    • /
    • pp.181-193
    • /
    • 2022
  • The study was conducted to provide basic data for stable forest management according to climate change by identifying the ecological characteristics of Mt. Dalma warm temperate forest. 30 survey plots were established for vegetation structure analysis, and communities which classified by applying TWINSPAN analysis and DCA analysis techniques. Four plant communities were subdivided into Quercus acuta-Eurya japonica community, Quercus acuta community, Quercus salicina-Camellia japonica community, and Quercus acuta-Camellia japonica community. The tree layers were dominated by Quercus acuta and Quercus salicina, and the subtree layers were dominated by Camellia japonica and Eurya japonica, and the Sasa borealis. The species diversity index were in the range of 0.849 to 0.969, and the degree of Evenness index were 0.514 to 0.569, and the similarity index were 59.57 to 75.47%. The species composition in the community indicated that the deciduous broad-leaved and coniferous trees have already been eliminated in competition with evergreen broad-leaved trees. Tree species with good cold resistance such as Quercus acuta and Quercus salicina were dominant species under current climatic conditions, but the dominant species might be changed to more shade-tolerance evergreen broad-leaved through the succession.

Monitoring for the Restoration of Evergreen Broad-leaved forest in Warm Temperate Region(II) (난대 기후대의 상록활엽수림 복원 모니터링(II))

  • 오구균;최송현;나경태;김성현
    • Korean Journal of Environment and Ecology
    • /
    • v.17 no.4
    • /
    • pp.316-323
    • /
    • 2004
  • In order to monitor the vegetation restoration in the evergreen broad-leaved forest, eighteen experimental plots including control plots were established at Wando Arboretum in 1996. Several treatments such as density control, selective cutting and warm temperate species planting were done in the experimental plots. Seven years after the restoration experiments, the important percentage of Quercus acuta showed a tendency to a higher increase in the experiment plots than control plots in Q. Acutu. Also the important percentage of Q. Acuta in Q. acute Carpinus tschonoskii community increased in the tree layer. Pinus densiflora community was increased highly in important percentage of Q. Acuta, As a whole, vegetation structure in the experiment plot showed successional stage to Q. Acutu community. In addition, important percentage of evergreen broad-leaved trees and shrubs and number of warm temperate species and basal area were increased in the experiment plots while the introduced evergreen broad-leaved trees were declined.

Freezing Injury Characteristics of Evergreen Broad-Leaved Trees in Southern Urban Area, Korea (남부지역 도시녹지의 난대상록활엽수 동해피해 특성)

  • Jung, Su Young;Lee, Kwang Soo;Yoo, Byung Oh;Park, Yong Bae;Ju, Nam Gyu;Kim, Hyungho;Park, Joon Hyung
    • Journal of Korean Society of Forest Science
    • /
    • v.103 no.4
    • /
    • pp.528-536
    • /
    • 2014
  • The aim of this study was to investigate the damage characteristics induced by winter freezing of evergreen broad-leaved trees distributed in urban area of warm temperate forest zone, which are gaining increased interest recently as climate change. The results of the study indicated that, as for 'stem injury', Camellia japonica Linne (59.6%) had the weakest damage, while Ternstroemia gymnanthera Sprague (83.3%) had the most severe damage. By the visual evaluation of freezing injury according to the characteristics of plantations environment, the observations of single planting (p<0.01) in planting method had weaker damage than those of group planting, the observations of under tree (p<0.001), plain (p<0.001), and organic matter plenty (p<0.05) in plantations characteristics had significant differences with relatively weaker damage than the observations of open space, slop, and scarcity, respectively. Tree height (-0.432) and crown width (-0.470) among growth factors were negatively correlated with the severity of damage, respectively. Therefore, the selection of tree species is vital for the successful creation of these urban forested area by making considerations of planting environment, and further research on evergreen broad-leaved trees is needed in this aspect.

Habitat Climate Characteristics of Lauraceae Evergreen Broad-leaved Trees and Distribution Change according to Climate Change (녹나무과 상록활엽수 자생지 기후특성과 기후변화에 따른 분포 변화)

  • Yu, Seung-Bong;Kim, Byung-Do;Shin, Hyun-Tak;Kim, Sang-Jun
    • Korean Journal of Environment and Ecology
    • /
    • v.34 no.6
    • /
    • pp.503-514
    • /
    • 2020
  • Climate change leads to changes in phenological response and movement of plant habitats. Korea's evergreen broad-leaved forest has widened its distribution area compared for the past 20 years, and the range of its native habitats is moving northward. We analyzed climate indices such as the warmth index, the cold index, the lowest temperature in the coldest month, and the annual average temperature, which are closely related to vegetation distribution, to predict the change in the native habitat of Lauraceae evergreen broad-leaved trees. We also analyzed the change and spatial distribution to identify the habitat climate characteristics of 8 species of Lauraceae evergreen broad-leaved trees distributed in the warm temperate zone in Korea. Moreover, we predicted the natural habitat change in the 21st century according to the climate change scenario (RCP 4.5/8.5), applying the MaxEnt species distribution model. The monthly average climate index of the 8 species of Lauraceae evergreen broad-leaved trees was 116.9±10.8℃ for the temperate index, the cold index 3.9±3.8℃, 1495.7±455.4mm for the annual precipitation, 11.7±3.5 for the humidity index, 14.4±1.1℃ for the annual average temperature, and 1.0±2.1℃ for the lowest temperature of winter. Based on the climate change scenario RCP 4.5, the distribution of the Lauraceae evergreen broad-leaved trees was analyzed to expand to islands of Jeollanam-do and Gyeongsangnam-do, adjacent areas of the west and south coasts, and Goseong, Gangwon-do on the east coast. In the case of the distribution based on the climate change scenario RCP 8.5, it was analyzed that the distribution would expand to all of Jeollanam-do and Gyeongsangnam-do, and most regions except for some parts of Jeollabuk-do, Chungcheongnam-do, Gyeongsangbuk-do, and the capital region. For the conservation of Lauraceae evergreen broad-leaved trees to prepare for climate change, it is necessary to establish standards for conservation plans such as in-situ and ex-situ conservation and analyze various physical and chemical characteristics of native habitats. Moreover, it is necessary to preemptively detect changes such as distribution, migration, and decline of Lauraceae evergreen broad-leaved trees following climate change based on phenological response data based on climate indicators and establish conservation management plans.

Characteristics Analysis of Site Condition and Disturbance Resistance of Tree Species for Damaged Forested Land in South Korea (산림재해지 복구를 위한 주요 수종의 입지 및 재해 저항 특성 분석)

  • Kang, Young-Ho;Lee, Chun-Yong;Bae, Yeong-Tae;Kim, Chan-Beom
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.14 no.6
    • /
    • pp.1-15
    • /
    • 2011
  • We recently witnessed increasingly more natural disturbances on forested land. On the other hand, only limited number of nursery grown tree species are available for restoration projects. At the same time, so little on the disturbance resistance of species has been studied that a selection of right species for right site condition becomes very difficult. This study is a compilation of the site specificities and disturbance resistance of each species native to South Korea. Each species was surveyed for 11 items related to site specificities, and 12 items related to disturbance resistance including the resistance to snow damage. This study was conducted for 161 tree species from 44 families : 21 evergreen conifer species, 2 deciduous conifer species, 18 evergreen broad-leaved species, 118 deciduous broad-leaved species, and 2 monocotyledon species. This study suggests that native species in South Korea show resistance to all types of natural disturbances except drought.

Vegetation structure and distribution characteristics of Symplocos prunifolia, a rare evergreen broad-leaved tree in Korea

  • Kim, Yangji;Song, Kukman;Yim, Eunyoung;Seo, Yeonok;Choi, Hyungsoon;Choi, Byoungki
    • Journal of Ecology and Environment
    • /
    • v.44 no.4
    • /
    • pp.275-285
    • /
    • 2020
  • Background: In Korea, Symplocos prunifolia Siebold. & Zucc. is only found on Jeju Island. Conservation of the species is difficult because little is known about its distribution and natural habitat. The lack of research and survey data on the characteristics of native vegetation and distribution of this species means that there is insufficient information to guide the management and conservation of this species and related vegetation. Therefore, this study aims to identify the distribution and vegetation associated with S. prunifolia. Results: As a result of field investigations, it was confirmed that the native S. prunifolia communities were distributed in 4 areas located on the southern side of Mt. Halla and within the evergreen broad-leaved forest zones. Furthermore, these evergreen broad-leaved forest zones are themselves located in the warm temperate zone which are distributed along the valley sides at elevations between 318 and 461 m. S. prunifolia was only found on the south side of Mt. Halla, and mainly on south-facing slopes; however, small communities were found to be growing on northwest-facing slopes. It has been confirmed that S. prunifolia trees are rare but an important constituent species in the evergreen broad-leaved forest of Jeju. The mean importance percentage of S. prunifolia community was 48.84 for Castanopsis sieboldii, 17.79 for Quercus acuta, and 12.12 for Pinus thunbergii; S. prunifolia was the ninth most important species (2.6). Conclusions: S. prunifolia can be found growing along the natural streams of Jeju, where there is little anthropogenic influence and where the streams have caused soil disturbance through natural processes of erosion and deposition of sediments. Currently, the native area of S. prunifolia is about 3300 ㎡, which contains a confirmed population of 180 individual plants. As a result of these low population sizes, it places it in the category of an extremely endangered plant in Korea. In some native sites, the canopy of evergreen broad-leaved forest formed, but the frequency and coverage of species were not high. Negative factors that contributed to the low distribution of this species were factors such as lacking in shade tolerance, low fruiting rates, small native areas, and special habitats as well as requiring adequate stream disturbance. Presently, due to changes in climate, it is unclear whether this species will see an increase in its population and habitat area or whether it will remain as an endangered species within Korea. What is clear, however, is that the preservation of the present native habitats and population is extremely important if the population is to be maintained and expanded. It is also meaningful in terms of the stable conservation of biodiversity in Korea. Therefore, based on the results of this study, it is judged that a systematic evaluation for the preservation and conservation of the habitat and vegetation management method of S. prunifolia should be conducted.

Ecological Characteristics and Vegetation Structure Analysis of Eurya Japonica Community -Focusing on Busan Metropolitan City- (사스레피나무 군락의 생태적 특성 및 식생구조 분석 -부산광역시를 중심으로-)

  • Jang, Jung-Eun;Lee, Sang-Cheol;Choi, Song-Hyun
    • Korean Journal of Environment and Ecology
    • /
    • v.34 no.2
    • /
    • pp.157-169
    • /
    • 2020
  • The purpose of this study is to investigate the ecological characteristics and vegetation structures of Eurya japonica in Busan. As a result of the TWINSPAN and DCA analysis, 89 plots of 100㎡ each were divided into 3 communities: Quercus serrata-Pinus densiflora-E. japonica community, Pinus thunbergii-E. japonica community, and P. thunbergii-Camellia japonica community. Community I consisted of the Quercus serrata-Pinus densiflora-E. japonica which was mainly located in the high altitude inland. While Q. serrata and P. densiflora competed in the tree layer, the dominant species of the understory layer was E. japonica. Since Carpinus tschonoskii, one of the climax species, was distributed evenly from shrub to tree layers, it was likely that deciduous oak trees or Carpinus tschonoskii would become dominant species in community I. In community I, E. japonica was found in higher altitude than the other evergreen broad-leaved tree and was expected to maintain their tree vigor even if the vegetation structure is converted into the deciduous forest. Community II, the P. thunbergii-E. japonica community, was predicted to maintain its tree vigor unless there were unexpected disturbance factors. Community III, consisting of P. thunbergii-C. japonica and located in Dongbaek Island, was under artificial management. In community III, P. thunbergii was the only species in the tree layer, while C. japonica was predominant in the understory layer. E. japonica and various evergreen broad-leaved tree species were present in the understory layer and shrub layer, which were unmanaged areas. Therefore, it is expected that unless C. japonica is continuously managed, E. japonica is likely to become the dominant species. There were also various evergreen broad-leaved species, such as Machilus thunbergii and Pittosporum tobira, present in the shrub layer. If the temperature continues to rise, the habitat is expected to become evergreen broad-leaved forests in the future as P. thunbergii community declines. The result of Pearson's correlation coefficient analysis of E. japonica and species appearing in 89 plots showed that 9 species were had a statistically significant relationship (p<0.05). Four species, including P. tobira and Q. dentata, had a positive correlation. Five species had a negative correlation, and C. japonica, which had the same ecological position as E. japonica, showed the most negative correlation at -0.384.

Analysis of Plants Social Network on Island Area in the Korean Peninsula (한반도 도서지역의 식물사회네트워크 분석)

  • Sang-Cheol Lee;Hyun-Mi Kang;Seok-Gon Park
    • Korean Journal of Environment and Ecology
    • /
    • v.38 no.2
    • /
    • pp.127-142
    • /
    • 2024
  • This study aimed to understand the interrelationships between tree species in plant communities through Plant Social Network (PSN) analysis using a large amount of vegetation data surveyed in an island area belonging to a warm-temperate boreal forest. The Machilus thunbergii, Castanopsis sieboldii, and Ligustrum japonicum, which belong to the canopy layer, Pittosporum tobira and Ardisia japonica, which belong to the shrub layer and Trachelospermum asiaticum and Stauntonia hexaphylla, which belong to the vines, appearing in evergreen broad-leaved climax forest community, showed strong positive association(+) with each other. These tree species had a negative association or no friendly relationship with deciduous broad-leaved species due to the large difference in location environments. Divided into 4 group modularizations in the PSN sociogram, evergreen broad-leaved tree species in Group I and deciduous broad-leaved tree species in Group II showed high centrality and connectivity. It was analyzed that the arrangement of tree species (nodes) and the degree of connection (grouping) of the sociogram can indirectly estimate environmental factors and characteristics of plant communities like DCA. Tree species with high centrality and influence in the PSN included T. asiaticum, Eurya japonica, Lindera obtusiloba, and Styrax japonicus. These tree species are common with a wide range of ecological niches and appear to have the characteristics and survival strategies of opportunistic species that commonly appear in forest gaps and damaged areas. They will play a major role in inter-species interactions and structural and functional changes in plant communities. In the future, long-term research and in-depth discussions are needed to determine how these species actually influence plant community changes through interactions

Measurement and estimation of transpiration from an evergreen broad-leaved forest in japan

  • Hirose, Shigeki;Humagai, Tomo′omi;Kumi, Atsushi;Takeuchi, Shin′ichi;Otsuki, Kyoichi;Ogawa, Shigeru
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2001.05a
    • /
    • pp.52-59
    • /
    • 2001
  • Methods to measure and estimate transpiration of a forest composed of evergreen broad-leaved trees (Pasania edulis Makino) are studied. Heat pulse velocity has been measured along with soil moisture and micrometeorological factors at the Fukuoka Experimental Forest, the Research Institute of Kyushu University Forests in Fukuoka, Japan (33$^{\circ}$38'N, 130$^{\circ}$31'E, alt. 75m). Tree cutting measurement was conducted to convert the heat pulse velocity into sap flow and transpiration. A big leaf model to calculate transpiration and Interception loss is examined and the estimated values are compared with the measured values obtained from the heat pulse measurement. The results show that 1) Pasania edulis Makino posessing radial pore structure had relatively high water content and high heat pulse velocity even within the central part of the stem near the pith, 2) the heat pulse velocity was well correspond to the water uptake in the tree cutting measurement, 3) the estimation of sap flow based on the heat pulse velocity is accurate, and 4) the big leaf model using the parameters obtained from measurement of a portable photosynthesis system in one day in summer gives reasonable estimation of transpiration independent of seasons and weather.

  • PDF