DOI QR코드

DOI QR Code

Analysis of Plants Social Network on Island Area in the Korean Peninsula

한반도 도서지역의 식물사회네트워크 분석

  • Sang-Cheol Lee (Applied Ecology Lab., Pusan National Univ.) ;
  • Hyun-Mi Kang (Dept. of Urban Planning and Landscape Architecture Major in Landscape Architecture, Mokpo National Univ.) ;
  • Seok-Gon Park (Dept. of Forest Resources and Landscape Architecture, Sunchon National Univ.)
  • 이상철 (부산대학교 응용생태연구실) ;
  • 강현미 (국립목포대학교 도시계획 및 조경학부 조경학전공) ;
  • 박석곤 (국립순천대학교 산림자원.조경학과 )
  • Received : 2023.11.07
  • Accepted : 2024.03.28
  • Published : 2024.04.30

Abstract

This study aimed to understand the interrelationships between tree species in plant communities through Plant Social Network (PSN) analysis using a large amount of vegetation data surveyed in an island area belonging to a warm-temperate boreal forest. The Machilus thunbergii, Castanopsis sieboldii, and Ligustrum japonicum, which belong to the canopy layer, Pittosporum tobira and Ardisia japonica, which belong to the shrub layer and Trachelospermum asiaticum and Stauntonia hexaphylla, which belong to the vines, appearing in evergreen broad-leaved climax forest community, showed strong positive association(+) with each other. These tree species had a negative association or no friendly relationship with deciduous broad-leaved species due to the large difference in location environments. Divided into 4 group modularizations in the PSN sociogram, evergreen broad-leaved tree species in Group I and deciduous broad-leaved tree species in Group II showed high centrality and connectivity. It was analyzed that the arrangement of tree species (nodes) and the degree of connection (grouping) of the sociogram can indirectly estimate environmental factors and characteristics of plant communities like DCA. Tree species with high centrality and influence in the PSN included T. asiaticum, Eurya japonica, Lindera obtusiloba, and Styrax japonicus. These tree species are common with a wide range of ecological niches and appear to have the characteristics and survival strategies of opportunistic species that commonly appear in forest gaps and damaged areas. They will play a major role in inter-species interactions and structural and functional changes in plant communities. In the future, long-term research and in-depth discussions are needed to determine how these species actually influence plant community changes through interactions

본 연구는 난온대림에 속한 도서지역에서 조사한 대량의 식생 데이터로 식물사회네트워크 분석을 통해 식물군락의 수종간 상호관계를 파악하고자 했다. 상록활엽수 성숙림에 출현하는 교목성 후박나무·구실잣밤나무·생달나무·광나무, 관목성 돈나무·자금우, 덩굴성 마삭줄·멀꿀이 서로 강한 양성결합(+)을 보였다. 이 수종들은 낙엽활엽수종과는 음성결합(-)하거나 친소관계가 없었는데 이는 입지환경 차이가 크기 때문이다. 식물사회네트워크 소시오그램에서 4개의 그룹으로 묶어 상록활엽수종인 그룹I과 낙활엽수종인 그룹II의 수종간에는 중심성과 연결성이 높게 나타났다. 소시오그램의 수종(노드) 배치와 연결정도(그룹화)는 DCA분석와 같이 환경요인과 식물군집의 특성을 간접적으로 추정 가능한 것으로 분석됐다. 식물사회네트워크상 중심성과 영향력이 큰 수종은 마삭줄·사스레피나무·생강나무·때죽나무 등이었다. 이 수종은 생태적 지위의 범위가 넓은 일반종이면서 숲틈과 훼손지 등에 흔히 출현하는 기회종의 특성과 생존전략을 갖는 것으로 보인다. 이 수종들이 식물군집의 종간 상호작용과 군집의 구조와 기능 변화에 그 역할이 클 것이다. 하지만 실제 식물사회에서 어떤 상호작용을 통해 식물군집 변화에 영향을 미치는지는 장기적인 연구와 심도 있는 논의가 필요하다.

Keywords

Acknowledgement

순천대학교 교연비 사업에 의하여 연구되었음.

References

  1. Bonacich, P.(1987) Power and centrality: A family of measures. American Journal of Sociology 92(5): 1170-1182.
  2. Bunn, A., D. Urban and T. Keitt(2000) Landscape connectivity: A conservation application of graph theory. J. Environmental Management 59(4): 265-278.
  3. Callaway R.M. and B.E. Mahall(2007) Family roots. Nature 448: 145-147.
  4. Choi, B.G.(2013) Syntaxonomy and syngeography of warm-temperate evergreen broad-leaved forests in Korea. Doctoral dissertation, Keimyung Univ., 148pp.
  5. Choi, K.R., K.H. Kim, J.W. Kim, G.J. Lee, D.Y. Yang and W.H. Nahm(2005) Vegetation history since the mid-lateglacial from Yeongsan river basin, Southwestern Korea. J. Ecol. Environ. 28(1): 37-43. (in Korean with English abstract)
  6. Cole, L.C.(1949) The measurement of interspecific association. Journal of Ecology 30(4): 411-424.
  7. Connor, E.F. and D. Simberloff(1983) Interspcific competition and species' co-occurrence patterns on islands: Null models and the evaluation of evidence. Oikos 41(3): 455-465.
  8. Freeman, L.C.(1978) Centrality in social networks conceptual clarification. Social Networks 1(3): 215-239.
  9. Gephy(2022) https://gephi.org/
  10. Greig-Smith, P.(1983) Quantitative Plant Ecology (3rd ed.). Blackwell Scientific Pub. Oxford, U.K., 359pp.
  11. Hill, M.O.(1979) DECORANA-a FORTRAN program for detrended correspondence analysis and reciprocal averaging. Ecology and Systematics, Cornel Univ., Ithaca, New York, 520pp.
  12. Iwasa, Y., T. Matsumoto and K. Kikuzawa(2003) Encyclopedia of ecology. Ecological Society of Japan, Kyoritsu Shuppan. 682pp. (in Japanese)
  13. Jabu, S.(1987) Restoration of a kaolin clay strip mine for wildlife habitat using biotechnical and revegetation methods. Master Dissertation, Univ. of Georgia, Athens, 226pp.
  14. Jang, J.E., S.C. Lee, H.M. Kang, S.B. Yu, H.S. Shin and S.H. Choi(2021) The plants social network through the analysis of the plant community structure and the social network: Conducted in Mudeungdan National Park. Korean J. Environ. Ecol. 35(2): 164-180. (in Korean with English abstract)
  15. Jin, H.J., J.H. Yoon and H.G. Cho(2006) An analysis system for protein-protein interaction data based on graph theory. Journal of KIISE: Computer Systems and Theory 33(5): 267-281. (in Korean with English abstract)
  16. Kang, H.M., J.W. Kang, C.Y. Sung and S.G. Park(2022) Characteristics and restoration strategies of warm-temperate forests vegetation types in island area on the Korean peninsula. Korean J. Environ. Ecol. 36(5): 507-524. (in Korean with English abstract)
  17. Kang, J.W.(2023) Vegetation characteristic through plant community structure and plants social network in Cheongwansan provincial park. Master Dissertation, Mokpo National Univ., 111pp. (in Korean with English abstract)
  18. Katoh, K.(1995) Comparative study on ordination methods in ecological community analysis. Environmental Science 8(4): 339-352. (in Japanese)
  19. Kim, H.G.(1991) The nature of frederic E. Clements's (1874-1945) Community organism: Research methods in ecology and plant Succession. Journal of the Korean History of Science Society 13(1): 34-55. (in Korean with English abstract)
  20. Kim, H.S., Y.J. Cho, A.Y. Kim, J.S. Kim and J.Y. Lee(2021) The mangement plan and distribution characteristics of evergreen broad-leaved forest of the Dadohaehaesang national park. The Journal of Korean Island 33(1): 149-167. (in Korean with English abstract)
  21. Kim, J.S., C.H. Jeon, S.C. Jung, C.S. Kim, H.G. Won, J.H. Cho and H.J. Cho(2016) A comparison of species composition and stand structure of the forest vegetation between inhabited and uninhabited island in the South Sea, Korea. Korean J. Environ. Ecol. 30(4): 771-782. (in Korean with English abstract)
  22. Kim, J.W. and Y.K. Lee(2006) Classification and assessment of plant xommunities. Worldscience Press, 240pp. (in Korean)
  23. Koo, K.A., W.S. Kong and C.K. Kim(2001) Distribution of evergreen broad-leaved plants and climatic factors. Journal of the Korean Geographical Society 36: 247-257. (in Korean with English abstract)
  24. Korea Forest Research Institute(2014) Resource evaluation and distribution of warm forest species in southern Korea. Korea Forest Research Institute, 23pp. (in Korean)
  25. Lee, H.S., C.S. Lee, B.R. Lee, K.S. Lee and S.H. Shin(2021) An integrative review for relating regulations and the improvement direction of island forest management. The Journal of Korean Island 33(2): 121-146. (in Korean with English abstract)
  26. Lee, J.H.(2004) One hundred year of ecology in Korea. Seoul National University Press, 547pp. (in Korean)
  27. Lee, S.C.(2018) A study of ecological planting model based on vegetation structure and plants social network analysis in urban forest. Ph. D. Dissertation, Pusan National Univ., 267pp. (in Korean with English abstract)
  28. Lee, S.C., H.M. Kang, S.G. Park, J.B. Baek, C.Y. Yu, I.C. Hwang and S.H. Choi(2022) Analysis of plants social network for vegetation management on Taejongdae in Busan metropolitan city. Korean J. Environ. Ecol. 36(6): 651-661. (in Korean with English abstract)
  29. Lee, S.C., S.H. Choi and W. Cho(2020) A study of visualization and analysis method about plants social network used for planting design: Focusing on forest vegetation area in Busan metropolitan city. Korean J. Environ. Ecol. 34(3): 260-271. (in Korean with English abstract)
  30. Lee, S.S.(2010) Network analysis methodology. Nonhyung Publications, Seoul, 370pp. (in Korean)
  31. Ludwig, J.A. and J.F. Reynolds(1988) Statistical ecology. John Wiley and Sons, New York, 337pp.
  32. Miyawaki, A.(1999) Creative ecology: Restoration of native forests by native trees. Plant Biotechnology 16(1): 15-25.
  33. Oh, K.K. and Y.S. Kim(1996) Restoration model of evergreen broad-leaved forests in warm temperate region(1): Vegetational structure. Korean J. Environ. Ecol. 10(1): 87-102. (in Korean with English abstract)
  34. Park, S.G. and H.M. Kang(2020) Vegetation characteristics of Geumnamhonam・Honam ridge areas understood through quantitative vegetation analysis. Korean J. Environ. Ecol. 34(4): 304-317. (in Korean with English abstract)
  35. Park, S.G., C.Y. Sung and H.M. Kang(2021) The types of warm temperate forest and the degraded levels in the island area of the west and south coast. Korean J. Environ. Ecol. 35(6): 579-593. (in Korean with English abstract)
  36. Park, S.G., S.H. Choi and S.C. Lee(2018) A review of vegetation succession in warm-temperate evergreen broad-leaved forests: Focusing on Actinodaphne lancifolia community. Korean J. Environ. Ecol. 32: 77-96. (in Korean with English abstract)
  37. Pielou, E.C.(1977) Mathematical Ecology. John Wiley and Sons, New York, 377pp.
  38. Rahman, L., K. Umeki and T. Honjo(2013) Architectural differences among shaded saplings of four evergreen broad-leaved tree species in Japan. Papers on Environmental Information Science 27: 5-10.
  39. Sasaki, T., A. Koyama, T. Koyanagi, T. Furukawa and K. Uchida (Translated by Park, S.G. and S.H. Choi)(2020) Data analysis of plant community structure and diversity. Nexus Publishing, 259pp. (in Korean)
  40. Schluter, D.(1984) A variance test for detecting species associations, with some example applications. Ecology 65: 998-1005.
  41. Scott-phillips T.C.(2008) Defining biological communication. Journal of Evolutionary Biology 21(2): 387-395.
  42. Shin, H.J., G.A. Park, M.J. Park and S.J. Kim(2012) Projection of forest vegetation change by applying future climate change scenario MIROC3.2 A1B. Journal of the Korean Association of Geographic Information Studies 15(1): 64-75. (in Korean with English abstract)
  43. Sung, C.Y., H.M. Kang and S.G. Park(2021) Predicting suitable restoration areas for warm-temperate evergreen broad-leaved forests of the islands of Jeollanamdo. Korean J. Environ. Ecol. 35(5): 558-568. (in Korean with English abstract)
  44. van Dam, N.M. and H.J. Bouwmeester(2016) Metabolomics in the rhizosphere: Tapping into belowground chemical communication. Trends in Plant Science 21(3) : 256-265.
  45. van't Padje, A., M.D. Whiteside and E.T. Kiers(2016) Signals and cues in the evolution of plant-microbe communication. Current Opinion in Plant Biology 32: 47-52.
  46. von Wehrden, H., J. Hanspach, H. Bruelheide and K. Wesche(2009) Pluralism and diversity: Trends in the use and application of ordination methods 1990-2007. Journal of Vegetation Science 20: 695-705.
  47. Watanabe. S.(1994) Specia of trees. University of Tokyo Press, 450pp. (in Japanese)
  48. Whittaker, R.H. and P.P. Feeny(1971) Allelochemics: Chemical interactions between species. Science 171: 757-770.
  49. Yu, S.B., B.D. Kim, H.T. Shin and S.J. Kim(2020) Habitat climate characteristics of lauraceae evergreen broad-leaved trees and distribution change according to climate change. Korean J. Environ. Ecol. 34(6): 503-514. (in Korean with English abstract)
  50. Yun, J.H., J.H. Kim, K.H. Oh and B.Y. Lee(2011) Distributional change and climate condition of warm-temperate evergreen broad-leaved trees in Korea. Korean J. Environ. Ecol. 25(1): 47-56. (in Korean with English abstract)