• Title/Summary/Keyword: Event filtering

Search Result 96, Processing Time 0.024 seconds

A Query Index for Processing Continuous Queries over RFID Tag Data (RFID 태그 데이타의 연속질의 처리를 위한 질의 색인)

  • Seok, Su-Wook;Park, Jae-Kwan;Hong, Bong-Hee
    • Journal of KIISE:Databases
    • /
    • v.34 no.2
    • /
    • pp.166-178
    • /
    • 2007
  • The ALE specification of EPCglobal is leading the development of RFID standards, includes the Event Cycle Specification (ECSpec) describing how long a cycle is, how to filter RFID tag data and which reader is interested in. The ECSpec is a specification for filtering and collecting RFID tag data. It is registered to a middleware for long time and is evaluated to return results satisfying the requirements included in it. Thus, it is quite similar to the continuous query. It can be transformed into a continuous query as its predicate in WHERE clause is characterized by the long interval. Long intervals cause problems deteriorating insertion and search performance of existing query indices. In this paper, we propose a TLC-index as a new query index structure for long interval data. The TLC-index has hybrid structure that uses the cell construct of CQI-index with the virtual construct of VCR-index for partitioning long intervals. The TLC-index can reduce the storage cost and improve the insertion performance through decomposing long intervals into one or more cell constructs that have long size. It can also improve the search performance through decomposing short intervals into one or more virtual constructs that have short size enough to fit into those intervals.

Range Stabbing Technique for Continuous Queries on RFID Streaming Data) (RFID 스트리밍 데이타의 연속질의를 위한 영역 스태빙 기법)

  • Park, Jae-Kwan;Hong, Bong-Hee;Lee, Ki-Han
    • Journal of KIISE:Databases
    • /
    • v.36 no.2
    • /
    • pp.112-122
    • /
    • 2009
  • The EPCglobal leading the development in RFID standards proposed Event Cycle Specification (ECSpec) and Event Cycle Reports (ECReports) for the standard about RFID middleware interface. ECSpec is a specification for filtering and collecting RFID tag data and is treated as a Continuous Query (CQ) processed during fixed time intervals repeatedly. ECReport is a specification for describing the results after ECSpec is processed. Thus, it is efficient to apply Query Indexing technique designed for the continuous query processing. This query index processes ECSpecs as data and tag events as queries for efficiency. In logistics environment, the similar or same products are transferred together. Also, when RFID tags attached to the products are acquired, the acquisition events occur massively for the short period. For these properties, it is inefficient to process the massive events one by one. In this paper, we propose a technique reducing similar search process by considering tag events which are collected by the report period in ECSpec, as a range query. For this group processing, we suggest a queuing method for collecting tag events efficiently and a structure for generating range queries in the queues. The experiments show that performance is enhanced by the proposed methods.

Source parameters for the December 13 1996 ML 4.5 Earthquake in Yeongwol, South Korea (1996년 12월 13일 ML 4.5 영월 지진의 지진원 상수)

  • Choi, Ho-Seon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.13 no.5
    • /
    • pp.23-29
    • /
    • 2009
  • On December 13, 1996, an earthquake with local magnitude (M$_L$) 4.5 occurred in the Yeongwol area of South Korea. The epicenter was 37.2545$^{\circ}$N and 128.7277$^{\circ}$E, which is located inside the Okcheon Fold Belt. The waveform inversion analysis was carried out to estimate source parameters of the event according to the filtering bandwidth of seismic data. Using 0.02$\sim$0.2 Hz filtering bandwidth, focal depth and seismic moment were estimated to be 6 km and 1.3$\times$10$^{16}$ N$\cdot$m, respectively. This seismic moment corresponds to the moment magnitude (M$_W$) 4.7. The focal mechanism by the waveform inversion and P wave first motion polarity analysis is a strike slip faulting including a small thrust component, and the direction of P-axis is ENE-WSW. The moment magnitude estimated by spectral analysis was 4.8, which is similar to that estimated by waveform inversion. Average stress drop was estimated to be 14.3 MPa.

Noncontact Sleep Efficiency and Stage Estimation for Sleep Apnea Patients Using an Ultra-Wideband Radar (UWB 레이더를 사용한 수면무호흡환자에 대한 비접촉방식 수면효율 및 수면 단계 추정)

  • Park, Sang-Bae;Kim, Jung-Ha
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.3
    • /
    • pp.433-444
    • /
    • 2020
  • This study proposes a method to improve the sleep stage and efficiency estimation of sleep apnea patients using a UWB (Ultra-Wideband) radar. Motion and respiration extracted from the radar signal were used. Respiratory signal disturbances by motion artifacts and irregular respiration patterns of sleep apnea patients are compensated for in the preprocessing stage. Preprocessing calculates the standard deviation of the respiration signal for a shift window of 15 seconds to estimate thresholds for compensation and applies it to the breathing signal. The method for estimating the sleep stage is based on the difference in amplitude of two kinds of smoothed respirations signals. In smoothing, the window size is set to 10 seconds and 34 seconds, respectively. The estimated feature was processed by the k-nearest neighbor classifier and the feature filtering model to discriminate between the sleep periods of the rapid eye movement (REM) and non-rapid eye movement (NREM). The feature filtering model reflects the characteristics of the REM sleep that occur continuously and the characteristics that mainly occur in the latter part of this stage. The sleep efficiency is estimated by using the sleep onset time and motion events. Sleep onset time uses estimated features from the gradient changes of the breathing signal. A motion event was applied based on the estimated energy change in the UWB signal. Sleep efficiency and sleep stage accuracy were assessed with polysomnography. The average sleep efficiency and sleep stage accuracy were estimated respectively to be about 96.3% and 88.8% in 18 sleep apnea subjects.

Development of Filtering System ADDAVICHI for Fake Reviews using Big Data Analysis (빅데이터 분석을 활용한 가짜 리뷰 필터링 시스템 ADDAVICHI)

  • Jeong, Davichi;Rho, Young-J.
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.6
    • /
    • pp.1-8
    • /
    • 2019
  • Recently, consumer distrust has deepened due to blog posts focusing only on public relations due to 'viral marketing'. In addition, marketing projects such as false writing or exaggerated use of the latter phase are one of the most popular programs in 2016 as they are cheaper and more effective than newspaper and TV ads, and the size of advertising costs is set to be a major means of advertising at '3 trillion 394.1 billion won. From this 'viral marketing,' it has become an Internet environment that needs tools to filter information. The fake review filtering application ADDAVICHI presented in this paper extracts, analyzes, and presents blog keywords, total number of searches, reliability and satisfaction when users search for content such as "event" and "taste restaurant." Reliability shows the number of ad posts on a blog, the total number of posts, and satisfaction shows a clean post with confidence divided into positive and negative posts. Finally, the keyword shows a list of the top three words in the review from a positive post. In this way, it helps users interpret information away from advertising.

Stochastic Continuous Storage Function Model with Ensemble Kalman Filtering (I) : Model Development (앙상블 칼만필터를 연계한 추계학적 연속형 저류함수모형 (I) : - 모형 개발 -)

  • Bae, Deg-Hyo;Lee, Byong-Ju;Georgakakos, Konstantine P.
    • Journal of Korea Water Resources Association
    • /
    • v.42 no.11
    • /
    • pp.953-961
    • /
    • 2009
  • The objective of this study is to develop a stochastic continuous storage function model for enhancement of an event-oriented watershed and channel storage function models which have been used as an official flood forecast model in Korea. For this study, soil moisture accounting component is added to the original storage function model and each hydrologic component, such as surface flow, subsurface flow, groundwater flow and actual evaportranspiration, is simulated as a function of soil water content. And also, ensemble Kalman filtering technique is used for real-time assimilation of measured streamflow from various stream locations in the watershed. Therefore the enhanced model will be able to simulate hydrologic components for long-term period without additional estimation of model parameters and to give more accurate and reliable results than those from the existing deterministic model due to the assimilation of measured streamflow data.

A Method to Improve Energy Efficiency Using a Function that Evaluate the Probability of Attempts to Verify a Report at Intermediate Node in USN (USN에서 중간 노드에서의 보고서 검증 시도 확률 평가 함수를 이용한 에너지 효율 향상 기법)

  • Lee, Hyun-Woo;Moon, Soo-Young;Cho, Tae-Ho
    • Journal of the Korea Society for Simulation
    • /
    • v.20 no.4
    • /
    • pp.21-29
    • /
    • 2011
  • Wireless sensor nodes operate in open environments. The deployed sensor nodes are very vulnerable to physical attacks from outside. Attackers compromise some sensor nodes. The compromised nodes by attackers can lead to false data injection into sensor networks. These attacks deplete the limited energy of sensor nodes. Ye et al. proposed the Statistical En-Route Filtering (SEF) as a countermeasure of the attacks. The sensor node in SEF examines the event reports based on certain uniform probability. Thus, the same energies are consumed in both legitimate reports and false reports. In this paper, we propose a method that each node controls the probability of attempts to verify a report to reduce energy consumption of sensor nodes. The probability is determined in consideration of the remaining energy of the node, the number of hops from the node to SINK node, the ratio of false reports. the proposed method can have security which is similar with SEF and consumes lower energy than SEF.

Real-time Wave Overtopping Detection and Measuring Wave Run-up Heights Based on Convolutional Neural Networks (CNN) (합성곱 신경망(CNN) 기반 실시간 월파 감지 및 처오름 높이 산정)

  • Seong, Bo-Ram;Cho, Wan-Hee;Moon, Jong-Yoon;Lee, Kwang-Ho
    • Journal of Navigation and Port Research
    • /
    • v.46 no.3
    • /
    • pp.243-250
    • /
    • 2022
  • The purpose of this study was to propose technology to detect the wave in the image in real-time, and calculate the height of the wave-overtopping through image analysis using artificial intelligence. It was confirmed that the proposed wave overtopping detection system proposed in this study could detect the occurring of wave overtopping, even in severe weather and at night in real-time. In particular, a filtering algorithm for determining if the wave overtopping event was used, to improve the accuracy of detecting the occurrence of wave overtopping, based on a convolutional neural networks to catch the wave overtopping in CCTV images in real-time. As a result, the accuracy of the wave overtopping detection through AP50 was reviewed as 59.6%, and the speed of the overtaking detection model was 70fps based on GPU, confirming that accuracy and speed are suitable for real-time wave overtopping detection.

Ultrasound Harmonic Imaging Method based on Harmonic Quadrature Demodulation (하모닉 직교 방식의 초음파 고조파 영상화 기법)

  • Kim, Sang-Min;Song, Jae-Hee;Song, Tai-Kyong
    • Journal of Biomedical Engineering Research
    • /
    • v.30 no.1
    • /
    • pp.79-88
    • /
    • 2009
  • A harmonic quadrature demodulation method to extract the second harmonic component from focused ultrasound signals after a single transmit-receive event is proposed. In the proposed method, the focused ultrasound signal is converted into baseband inphase and quadrature components by multiplying with sine and cosine signals both having twice the center frequency of the transmitted signal and filtering the two modulated signals. The quadrature component is then passed through a Hilbert filter to be added to the inphase component, which leaves only the envelope of the second harmonic component. A novel phase estimation technique is employed in the proposed method to avoid the phase mismatch between the focused signal and the two modulating signals. The proposed method is verified through both theoretical analysis and computer simulations. It is shown that compared to the pulse inversion scheme the proposed method provides almost the same results for stationary targets and significantly improved harmonic to fundamental ratio for moving targets.

Design of Sensor Network Security Model using Contract Net Protocol and DEVS Modeling (계약망 프로토콜과 DEVS 모델링을 통한 센서네트워크 보안 모델의 설계)

  • Hur, Suh Mahn;Seo, Hee Suk
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.4 no.4
    • /
    • pp.41-49
    • /
    • 2008
  • Sensor networks are often deployed in unattended environments, thus leaving these networks vulnerable to false data injection attacks in which an adversary injects forged reports into the network through compromised nodes. Such attacks by compromised sensors can cause not only false alarms but also the depletion of the finite amount of energy in a battery powered network. In order to reduce damage from these attacks, several security solutions have been proposed. Researchers have also proposed some techniques to increase the energy-efficiency of such security solutions. In this paper, we propose a CH(Cluster Header) selection algorithm to choose low power delivery method in sensor networks. The CNP(Contract Net Protocol), which is an approach to solve distribution problems, is applied to choose CHs for event sensing. As a result of employing CNP, the proposed method can prevent dropping of sensing reports with an insufficient number of message authentication codes during the forwarding process, and is efficient in terms of energy saving.