• 제목/요약/키워드: Evaporator heat transfer

검색결과 264건 처리시간 0.02초

Investigation of Boiling Heat Transfer Characteristics of Two-Phase Closed Thermosyphons with Various Internal Grooves

  • Han, Ku-Il;Cho, Dong-Hyun;Park, Jong-Un
    • Journal of Mechanical Science and Technology
    • /
    • 제17권11호
    • /
    • pp.1739-1745
    • /
    • 2003
  • The boiling heat transfer characteristics of two-phase closed thermosyphons with internal grooves are studied experimentally and a simple mathematical model is developed to predict the performance of such thermosyphons. The study focuses on the boiling heat transfer characteristics of a two-phase closed thermosyphons with copper tubes having 50, 60, 70, 80, 90 internal grooves. A two-phase closed thermosyphon with plain copper tube having the same inner and outer diameter as those of grooved tube is also tested for comparison. Methanol is used as working fluid. The effects of the number of grooves, the operating temperature, the heat flux are investigated experimentally. From these experimental results, a simple mathematical model is developed. In the present model, boiling of liquid pool in the evaporator is considered for the heat transfer mechanism of the thermosyphon. And also the effects of the number of grooves, the operating temperature, the heat flux are brought into consideration. A good agreement between the boiling heat transfer coefficient of the thermosyphon estimated from experimental results and the predictions from the present mathematical model is obtained. The experimental results show that the number of grooves and the amount of the working fluid are very important factors for the operation of thermosyphons. The two-phase closed thermosyphon with copper tubes having 60 internal grooves shows the best boiling heat transfer performance.

히트파이프 응축부의 초음파 분무냉각에 관한 실험적 연구 (An Experimental Study on Ultrasonic Spray Cooling of Heat Pipe Condenser)

  • 김영찬;한양호
    • 설비공학논문집
    • /
    • 제16권1호
    • /
    • pp.77-83
    • /
    • 2004
  • In this study, the spray cooling heat transfer and working characteristics of the screen wick heat pipe with ultrasonic spray cooling system in condenser were experimentally investigated. The heat pipe was made of copper tube 300 mm long with inner diameter of 11.1 mm. The evaporator and condenser lengths of heat pipe were 40, 200 mm and the wick structure consists of two layer of 100 mesh copper screen. The experimental results show that the ultrasonic spray cooling increases the heat transfer rate on the condenser surface, and the total thermal resistance of heat pipe system decreases remarkably. A comparison is made for the two working fluids, water and ethanol. The surface temperature of the ethanol tube in evaporator section becomes higher than that of the water tube. Thus, the experimental result shows that water is more useful than ethanol as the working fluid because of increasing the operational limit within this experimental conditions.

Theoretical and Experimental Studies on Boiling Heat Transfer for the Thermosyphons with Various Helical Grooves

  • Han Kyuil;Cho Dong-Hyun
    • Journal of Mechanical Science and Technology
    • /
    • 제19권8호
    • /
    • pp.1662-1669
    • /
    • 2005
  • Boiling heat transfer characteristics of a two-phase closed thermosyphons with various helical grooves are studied experimentally and a mathematical correlation is developed to predict the performance of such thermosyphons. The study focuses on the boiling heat transfer characteristics of two-phase closed thermosyphons with copper tubes having 50, 60, 70, 80, 90 internal helical grooves. A two-phase closed thermosyphon with plain copper tube having the same inner and outer diameter as those of grooved tubes is also tested for comparison. Water, methanol and ethanol are used as working fluid. The effects of the number of grooves, various working fluids, operating temperature and heat flux are investigated experimentally. From these experimental results, a mathematical model is developed. In the present model, boiling of liquid pool in the evaporator is considered for the heat transfer mechanism of the thermosyphons. And also the effects of the number of grooves, the various working fluids, the operating temperature and the heat flux are brought into consideration. A good agreement between the boiling heat transfer coefficient of the thermosyphon estimated from experimental results and the predictions from the present mathematical correlation is obtained. The experimental results show that the number of grooves, the amount of the working fluid and the various working fluids are very important factors for the operation of thermosyphons. Also, the thermosyphons with internal helical grooves can be used to achieve some inexpensive and compact heat exchangers in low temperature.

접시형 증발부를 가진 회전형 히이트파이프의 실험적 연구 (An experimental study of the rotating heat pipe with a dished evaporator)

  • 권순석;장영석;유병욱
    • 태양에너지
    • /
    • 제12권3호
    • /
    • pp.116-125
    • /
    • 1992
  • 증발부를 접시형으로 하고 응축부를 나선형 그루우브로 하는 히이트파이프에서 움직이지 않는 경우와 회전을 하는 경우 입 열량에 따라 벽면과 증기의 온도분포를 구하여 전열특성을 연구하였다. 본 연구에 사용된 히이트파이프는 단순 히이트파이프보다 우수한 전열특성을 가지며, 히이트파이프의 열전달은 입열량과 회전수가 증가하면 증가하였다.

  • PDF

소형 슬러시 제조기 증발기에서 슬러시 형성시 전열 특성 (Heat Transfer Characteristics During Slush Formation in the Evaporator of a Small Slush Maker)

  • 최용민;김도영;김내현;이을종;김수환;변호원
    • 설비공학논문집
    • /
    • 제21권11호
    • /
    • pp.643-648
    • /
    • 2009
  • Tests were conducted to obtain heat transfer coefficients during slush formation from 10% sucrose solution. The slush was made by scraping the ice formed on the cylinder. Cold brine was supplied inside of the evaporator cylinder to cool the outer surface. Below a certain brine temperature, which was $-5^{\circ}C$ in this study, the solution was supercooled, and suddenly turned into ice crystals. During slush formation, the heat transfer coefficient oscillated significantly, due to periodic removal of ice chunk form the surface. The average heat transfer coefficient during slush formation was 40~70% higher than that obtained during single phase cooling. The heat transfer coefficient was also affected by the brine temperature with increasing heat transfer coefficient at higher brine temperature.

전열관 형상과 냉동기유 효과를 고려한 공조기기의 성능예측 (Effects of Oil and Internally Finned Tubes on the Performance of the Air-Conditioning Unit)

  • 윤점열;이관수;이동진
    • 설비공학논문집
    • /
    • 제6권4호
    • /
    • pp.388-398
    • /
    • 1994
  • Computer simulation model for predicting more accurately the heat transfer performance of the evaporator and condenser which have significantly affected on the performance of air-conditioner has been suggested. In this model oil and micro-fin tube used in a actual unit are considered to simulate the more realistic case. The effects of oil and micro-fin tube on the performance of an air-conditioner have been investigated. It is found that the present model requires higher pressure than the existing model due to the characteristics of the tube considered. However, it turns out that the present model is very close to an actual cycle. As the amount of oil inside the tube increases, condensation heat transfer coefficient shows a linear decrease irrespective of a kind of oil, while evaporation heat transfer coefficient increases slightly in the oil with low viscosity and decreases exponentially in the oil with high viscosity. Pressure drop in both evaporator and condenser increases linearly irrespective of a kind of oil. It is also found that the effect of the variation of oil concentration on the magnitude of two-phase region is negligible.

  • PDF

암모니아-물 랭킨사이클의 증발기에서의 엑서지 및 엔트랜시 성능 특성 해석 (Performance Characteristics Analysis of Evaporator in Ammonia-Water Rankine Cycle Based on Exergy and Entransy)

  • 김경훈;정영관
    • 한국수소및신에너지학회논문집
    • /
    • 제30권6호
    • /
    • pp.621-628
    • /
    • 2019
  • The use of the ammonia-water zeotropic mixture as a working fluid in the power generating system has been considered as a proven technology for efficient recovery of low-grade heat sources. This paper presents a thermodynamic performance analysis for ammonia-water evaporator using low-grade heat source, based on the exergy and entransy which has been recently introduced as a physical quantity to describe the heat transfer ability of an object. In the analysis, effects of the ammonia mass fraction and source temperature of the binary mixture are investigated on the system performance such as heat transfer, effectiveness, exergy destruction, entransy dissipation, and entransy dissipation based thermal resistance. The results show that the ammonia mass concentration and the source temperature have significant effects on the thermodynamic system performance of the ammonia-water evaporator.

수직 증발관에서 CaSO4 Scale 형성과 열전달에 관한 연구 (A Study of CaSO4 Scale Formation and Heat Transfer in a Vertical Tube Evaporator)

  • 홍춘근;최만수
    • 대한기계학회논문집B
    • /
    • 제23권11호
    • /
    • pp.1363-1370
    • /
    • 1999
  • A study of scaling and heat transfer has been carried out for a vertical tube evaporator in which $CaSO_4$ saturated water flows upward. Experimental apparatus including vacuum chambers and heaters has been designed and manufactured to study scaling phenomena for three different pressures(1atm, 0.27atm and 0.16atm). Overall heat transfer coefficients have been measured and shown to decrease with time as scaling proceeds. After the end of experiments, the vertical tube has been cut to measure the thickness of scale at different heights. Below the height where the bulk fluid temperature does not reach saturated temperature, the thickness of scale increases, however, beyond that height occurring saturated condition, the thickness does not vary much or even decreases a little. The measured fouling resistances also support these variations of scale thickness.

냉장고용 증발기의 핀 형상 변화에 따른 착상 열전달 성능특성 (Frosting Heat Transfer Characteristics of Evaporators Used for Household Refrigerators According to Fin Configuration)

  • 이무연;이상헌;정해원;김용찬;박재정
    • 대한기계학회논문집B
    • /
    • 제34권12호
    • /
    • pp.1071-1078
    • /
    • 2010
  • 본 논문은 냉장고용 증발기의 핀 형상을 변화시켜가면서 열전달 성능을 실험적으로 규명하는 것을 목적으로 하고 있다. 냉장고용 핀-튜브 증발기에 나선형 원형핀, 개별 평판핀 및 연속 평판핀을 적용하여 무착상 및 착상 열전달 성능과 제상성능을 측정하고 특성변화를 고찰하였다. 무착상조건에서 나선형 원형핀 증발기의 총괄열전달계수가 개별 평판핀 증발기에 비하여 22.3% 우수하고, 연속 평판핀 증발기에 비하여 40.2% 우수함을 알 수 있었다. 착상조건에서 나선형 원형핀 증발기의 총괄열전달계수가 개별 평판핀 증발기에 비하여 27.0% 우수하고, 연속 평판핀 증발기에 비하여 46.3% 우수함을 알 수 있었다. 또한, 나선형 원형핀 증발기의 제상량은 개별 평판핀 증발기에 비하여 3.2% 적고, 연속 평판핀 증발기에 비하여 9.4% 적었다.

습식건조제 이용 제습에서의 증발기 성능인자 영향 연구 (Study on the Effect of Performance Factors on the Evaporator Using Liquid Desiccant Falling Flim for Dehumidification)

  • 박문수
    • 설비공학논문집
    • /
    • 제7권3호
    • /
    • pp.512-520
    • /
    • 1995
  • This study investigates the simultanceous heat and mass transfer between a falling desiccant film and air in cross flow at the interface. The application of this work is the optimization of falling film evaporators for use in potential hybrid air conditioning systems. The specific geometry considered is liquid TEG films falling along the vertical cooled surfaces of a channel with air in cross flow. The equations to describe the coupled heat and mass transfer between a falling desiccant film and air in cross flow for a falling film evaporator have been presented and solved numerically. The effects of important design and operating variables on the evaporator performance predicted by the parametric numerical analysis and suggestions for performance improvements of the evaporator are presented.

  • PDF