• Title/Summary/Keyword: Evaporator

Search Result 1,047, Processing Time 0.027 seconds

Reduction of Refrigerant-induced Noise of the Refrigerator by Modification of the Evaporator Inlet Pipe (증발기 입구 배관의 구조 개선을 통한 냉장고 냉매 소음 저감)

  • Kim, Min-Seong;Han, Hyung-Suk;Kim, Tae-Hun;Jeong, Wei-Bong
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.10
    • /
    • pp.1012-1020
    • /
    • 2009
  • This research is focused on the experimental study of the noise induced by two-phase refrigerant flow in the evaporator. The two-phase flow in the evaporator has various flow patterns. The effects of two-phase flow pattern's characteristics on the noise of the evaporator are investigated experimentally. The experimental data shows that the generated noise is mainly related to the layout of the pipe and the certain two-phase flow patterns such as the churn and slug flow. Based on these results, we removed the unnecessary vertical pipe and changed the pipe diameter of the evaporator - inlet into small one in order to avoid the intermittent flow condition. The noise level of newly-designed inlet-pipe of the evaporator was measured experimentally by refrigerant-supplying equipment and compared with that of conventional one.

A Study on Performance Analysis of the Helically Coiled Evaporator with Circular Minichannels

  • Kim Ju-Won;Im Yong-Bin;Kim Jong-Soo
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.7
    • /
    • pp.1059-1067
    • /
    • 2006
  • In order to develop a compact evaporator, experiments that show characteristics of evaporating heat transfer and pressure drop in the helically coiled minichannel were performed in our previous research. This study was focused on the performance analysis of helically coiled heat exchangers with circular minichannels with an inner diameter=1.0 mm. The working fluid was R-22, and the properties of R-22 were estimated using the REFPROP program. Numerical simulation was performed to compare results with the experimental results of the helically coiled heat exchanger. As the heat transfer rate and pressure drop were calculated at the micro segment of the branch channels, the performance of the evaporator was evaluated. The following conclusions were obtained through the numerical simulations of the helically coiled heat exchanger. It showed good performance when the flow rate of each branch channels was suitable to heat load of air-side. The numerical simulation value agreed with experimental results within ${\pm}15%$. In this study, a numerical simulation program was developed to estimate the performance of a helically coiled evaporator. And, an optimum helically coiled minichannels evaporator was designed.

Characteristics of Absorption and Heat Transfer for Film Falling along a Vertical Inner Tube (3rd. Report, Refrigerating Capacity in Evaporator and Heating Capacity in Absorber) (수직관(수직관)내를 흘러내리는 액막식흡수기(液膜式吸收器)의 흡수(吸收) 및 열전달(熱傳達) 특성(特性) (제(第)3보(報), 증발기(蒸發器)의 냉동능력(冷凍能力)과 흡수기(吸收器)의 난방능력(暖房能力)))

  • Ohm, K.C.;Kashiwagi, Takao;Seo, J.Y.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.6 no.3
    • /
    • pp.175-181
    • /
    • 1994
  • This paper deals with the correlation of absorption rate in absorber and evaporation rate in evaporator. The evaporator consists of a copper tube of 10mm dia, and 600mm long and chilled water flowing through the tube is fed by the chilled water circulator. The flowrate of LiBr-water solution in the absorber plays a significant role in determining the magnitude of the heat transfer rate from chilled water to refrigerant There exists a flowrate of solution which has a maximum value of heat transfer. It is interesting to note that the absorption rate of absorber increases with increasing the heat transfer rate of the evaporator. Also, absorption rate increases with evaportation rate, and the ratio(the former/the other) depends on the inlet temperature of LiBr-water solution in the absorber. The heating capacity in the absorber is higher than the refrigerating capacity in the evaporator.

  • PDF

Theoretical Study on Heat Exchanger Performance of a Fin-tube Evaporator with Frost Growth in a $CO_2$ Refrigerator Truck (이산화탄소 냉매를 이용한 냉동탑차용 핀-관 증발기의 서리성장에 따른 열교환기 성능에 관한 해석적 연구)

  • Myung, Chi-Wook;Cho, Hong-Hyun
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.8 no.2
    • /
    • pp.48-54
    • /
    • 2012
  • To analyze the cooling performance of fin-tube evaporator in the refrigerator truck using R744 according to frost growth, the analytical model of evaporator was developed under frost and non-frost conditions. The performance of fin-tube evaporator was investigated with frost thickness and indoor temperature. Besides, the performance of evaporator under frost condition was compared to that under non-frost condition. As a result, area of air passage and system performance were decreased as the frost thickness increased. The cooling capacity was reduced by 10%, 20%, 30% when the frost thickness was 0.7 mm, 1.1 mm, and 1.6 mm respectively. At these conditions, the block ratio was 31%, 48%, and 71%. In addition, the outlet quality of refrigerant was not over 1 when the frost thickness was 1.6 mm in spite of high indoor air temperature.

A Study on the Basic Shape of an MF Evaporator (MF증발기 기초 형상 설계에 관한 연구)

  • Park, Yong-Seok;Seong, Hong-Seok;Suh, Jeong-Se
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.6
    • /
    • pp.39-44
    • /
    • 2019
  • The evaporator is a key driver of an air conditioning system's efficiency. In this study, we study methods of maximizing the efficiency of a Massey Ferguson (MF) evaporator by measuring how the cooling performance of different shapes vary with temperature. We varied the tube insertion depth as well as the shape of the evaporator's header and tube. When we compare header shapes of "D", "Ellipse", and "Quadrangle" types, we find that the elliptical header creates the smallest pressure loss and the highest temperature difference. Between tube shapes of "Rectangular", "Projection", and "Circular" types, the "Projection" type tube creates the most temperature difference. We also investigated the depth of tube insertion in the header and find that tube insertion of 5 - 10 mm is feasible; we selected the depths of 5, 7, and 10 mm since they corresponded to approximately 30%, 50%, and 70% of the total width of the header. The tube insertion test demonstrated that a tube insertion depth of 7 mm creates the least pressure loss and the highest temperature difference. In conclusion, the optimal evaporator design uses an "Ellipse" type header, "Projection" type tube, and a tube insertion depth between 30 and 50% of the header width.

Study on Performance Characteristics of Spiral Fin-Tube Evaporator Applied to Domestic Refrigerator-Freezers (나선형 핀-튜브 증발기를 적용한 냉장고의 성능 특성에 관한 연구)

  • Lee, Sang Hun;Yoon, Won Jae;Kim, Yongchan;Lee, Mooyeon;Yun, Seongjung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.3
    • /
    • pp.205-212
    • /
    • 2013
  • The objective of this study was to investigate the feasibility of replacing a conventional plate fin-tube evaporator with a spiral fin-tube evaporator by comparing the performance of domestic refrigerator-freezers adopting either the plate fin-tube evaporator or spiral fin-tube evaporator. Experiments were conducted for the domestic refrigerator-freezers using either a 2-column and 15-row plate fin-tube evaporator or three spiral fin-tube evaporators with 11, 13, and 15 tube rows (N). The optimum refrigerant charge decreased with a decrease in the number of tube rows. The power consumptions of the domestic refrigerator-freezers using the spiral fin-tube evaporators with N = 11 and 13 were 2.8% and 1.5% lower than those using the plate fin-tube evaporator, respectively. In addition, the cooling capacity of the spiral fin-tube evaporator with N = 13 was 3%-7% higher than that of the plate fin-tube evaporator under the frosting condition. In a cooling speed test, all of the evaporators showed similar performances.

A Study on the Cascade Hybrid Cooling/Refrigeration Cycle Equipped With Intercooler and Air-Cooled Condenser in Series (인터쿨러와 공랭식 응축기를 동시에 사용하는 냉방-냉동 겸용 캐스케이드 사이클에 대한 연구)

  • Kim, Nae-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.7
    • /
    • pp.353-362
    • /
    • 2019
  • Thermodynamic analysis of cascade refrigeration systems has attracted considerable research attention. On the other hand, a system evaluation based on thermodynamic analyses of the individual parts, including the evaporator, condenser, intercooler, expansion valve, etc., has received less attention. In this study, performance analysis was conducted on a cascade refrigeration system, which has an individual cooling and refrigeration evaporator, and equips the intercooler and air-cooled condenser in a series in a lower cycle. The thermo-fluid design was then performed on the major components of the system - upper condenser, lower condenser, cooling evaporator, refrigeration evaporator, intercooler, compressor, electronic expansion valve - of 15 kW refrigeration, and 8 kW cooling capacity using R-410A. A series of simulations were conducted on the designed system. The change in outdoor temperature from 26 C to 38 C resulted in the cooling capacity of the lower evaporator remaining approximately the same, whereas it decreased by 9% at the upper evaporator and by 63% at the intercooler. The COP decreased with increasing outdoor temperature. In addition, the COP of the cycle with the intercooler operation was higher that of the cycle without the intercooler operation. Furthermore, the increase in the upper condenser size by two fold increased the upper evaporator by 4%. On the other hand, the lower evaporator capacity remained the same. The COP of the upper cycle increased with increasing upper condenser size, whereas that of the lower cycle remained almost the same. When the size of the lower condenser was increased 2.8 fold, the intercooler capacity increased by 8%, whereas those of upper and the lower evaporator remained approximately the same. Furthermore, the COP of the lower cycle increased with an increase in the lower condenser. On the other hand, the change of the upper condenser was minimal.

A Study on Performance Improvement of a Heat Pump Dryer with an Extra Evaporator Outside (보조 외부 증발기를 이용한 히트펌프 건조기 성능 향상에 관한 연구)

  • Lee, Young-Lim;Park, Sang-Jun;Hwang, Il-Sun
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.24 no.10
    • /
    • pp.711-717
    • /
    • 2012
  • A heat pump dryer for the frozen food needs to preheat the air to a certain temperature where condensation can efficiently occur. In this study, an analysis of a heat pump dryer performance with operating conditions, an analysis of supplying heat with internal and external evaporators and a warm-up experiment with the evaporators have been performed. The results showed that the external evaporator can significantly accelerate the warm-up time of the dryer, so that it can reduce power consumption greatly. The use of the external evaporator is more efficient for higher ambient temperature. In addition, it was found that COP decreases and the range of evaporating pressure for the evaporator becomes narrower as the condensing temperature of the condenser increases.

The Performance Comparison of $CO_2$ Gascooler and Evaporator with Heat Exchanger Type (열교환기 형태에 따른 이산화탄소용 가스쿨러와 증발기의 성능비교)

  • Bae, Kyung-Jin;Cho, Hong-Hyun
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.6 no.2
    • /
    • pp.15-22
    • /
    • 2010
  • The natural refrigerants have used into HVAC equipments because the CFCs and HFCs have some environmental problems like high ODP and GWP. The carbon dioxide has small effect on the environmental problem but also good thermodynamics properties. In this study, the simulation study on the performance and characteristics of a $CO_2$ gascooler and evaporator using a fin-tube and microchannel heat exchanger has been conducted. Besides, the comparison of performance with operating condition was carried out in order to apply to the $CO_2$ heat pump system. As a result, the front sizes of a gascooler and evaporator using a microchannel were decreased by 63% and 58%, respectively, compared to those using a fin-tube. The performance of the fin-tube gascooler and evaporator were more responsive to the variation of operating conditions compared to that of microchannel. The pressure drop of a fin-tube heat exchanger was higher than that of a microchannel one.

A Study on Dynamic Characteristics of a Refrigeration System by Controlling the Evaporator Superheat (증발기 과열도제어에 따른 냉동장치의 동특성에 관한 연구)

  • 김재돌;오후규;윤정인
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.8
    • /
    • pp.2012-2021
    • /
    • 1995
  • An experimental study was performed for the analysis of dynamic characteristics of refrigeration system by controlling the evaporator superheat. Experimental data have been taken utilizing two different devices, thermostatic expansion valve(T.E.V.) and electronic expansion valve(E.E.V.), for the control of the evaporator superheat. The ranges of parameters, such as superheat, mass flow rate of refrigerant and inlet temperature of evaporator were 5-30.deg. C 90-170 kg/h and 10-25.deg. C, respectively. The data taken from the T.E.v.and E.E.v.were discussed with the control of the superheat, pressure drop, refrigerating capacity, compression work, evaporating temperature, condensing temperature and COP affecting performance characteristics of refrigeration system. In case of the refrigerant flow control with T.E..V., the superheat and pressure drop of the evaporator varied periodically, but the control with E.E.V., the parameters were very stable. In E.E.v.control, refrigerating capacity, compression work and evaporating temperature were decreased with increasing superheat, and the highest COP was obtained in the range of superheat from 5.deg. C to 15.deg. C.