• Title/Summary/Keyword: Evaporation gas

Search Result 429, Processing Time 0.024 seconds

Prediction of Adiabatic Capillary Tube Length of Heat Pump Using Carbon Dioxide (CO2 히트펌프용 단열 모세관 길이 예측에 관한 연구)

  • Oh, Hoo-Kyu;Choi, Kwang-Hwan;Jeon, Min-Ju;Son, Chang-Hyo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.5
    • /
    • pp.576-581
    • /
    • 2011
  • In this paper, the prediction of adiabatic capillary tube of heat pump using carbon dioxide is investigated theoretically and experimentally to offer the basic design data for the operating parameters of this system. The operating parameters considered in this study include evaporation temperature, cooling pressure of gas cooler, mass flowrate, and the length and diameter of capillary tube. Based on study results of several researchers, the correlation predicting the length of capillary tube of $CO_2$ heat pump was proposed. And the experimental results of evaporation temperature, mass flowrate and cooling pressure in adiabatic capillary tube have an good agreement to those calculated from Eq. (3) within 0.63~10.9%. Therefore, the prediction calculating the length of adiabatic capillary tube of $CO_2$ heat pump was proposed at the given conditions such as cooling pressure, evaporation temperature and capillary tube diameter.

An Experimental Study on the Combustion Characteristics of CWM Single Droplet (CWM 단일액적의 연소특성에 관한 연구)

  • Park, Chong-Sang;Lee, Tae-Won;HA, Jong-Yul;Chung, Sung-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.3
    • /
    • pp.402-410
    • /
    • 2000
  • As the combustion process of CWM consists of the water evaporation, the release and combustion of volatile matter, and the combustion of char for every particle, it is more complex than that of existent liquid fuel. Though the many studies on CWM combustion have been carried out by the single droplet using hanging methods or the multiple droplet using atomization methods, any report don't presents definite solution about the effects by the initial water evaporation and combustion of volatile. When CWM is suddenly exposed in the high temperature surroundings, the internal water evaporates and then each droplet builds up pores. Besides, porosity rate changes along the temperature of surroundings, the composition ratio of CWM, and the initial diameter of droplet. In result, because it affects the whole combustion rate, the combustion of CWM has complex mechanism as compared with the combustion of liquid or gas fuel. Therefore, concentrating on porous structure of CWM, this study has proceeded to acquire the basic data on the CWM injection combustion and closely examines the effects of the first stage combustion on the whole combustion by measuring the diameter variations, pore rate, mass fraction burned, and the internal temperature changes of CWM droplet. The results demonstrate that $60{\sim}70%$ of initial mass is reduced during water evaporation and volatile combustion period, and swelling rate, mass faction burned, and density variation are greatly concerned with atomization of CWM etc.

Comparison of characteristics of MgO films deposited by vacuum arc method with other methods. (진공아크 증착법과 다른 공정에 의해 증착된 MgO 박막 특성 비교)

  • 이은성;김종국;이성훈;이건환
    • Journal of the Korean Vacuum Society
    • /
    • v.12 no.2
    • /
    • pp.112-117
    • /
    • 2003
  • MgO films is widely used in plasma display panel (PDP) technology. In this work, structural and optical properties of the MgO films deposited by e-beam evaporation, reactive magnetron sputtering, which are commercially used, and arc deposition were compared. MgO thin films were deposited on glass substrates by vacuum arc deposition equipment using a magnesium metal target at various oxygen gas flows. In order to investigate the packing density by ellipsometer, to measure reasonable erosion-rates of the MgO protective layers, we introduced an acceleration test method, namely, Ar+ ion beam induced erosion test. Also, XPS and UV test were adopted to examine the effect of the moisture on the optical transmittance of the MgO protective layers, which showed that these of MgO films by arc deposition method sustained more 90% and were insensitive to effect of the moisture. XRD and AFM have been also used to study behaviors of the structure and surface morphology.

A Study on the Effect of Evaporation of Liquid Hydrogen Tank Related to Horizontal Sinewave (액화수소 저장탱크의 수평요동이 증발 특성에 미치는 영향에 대한 연구)

  • SEUNG JUN OH;JUN YEONG KWON;JEONG HWAN YOON
    • Journal of Hydrogen and New Energy
    • /
    • v.34 no.2
    • /
    • pp.155-161
    • /
    • 2023
  • Recently, a study on alternative and renewable energy is being conducted due to energy depletion and environmental problems. In particular, a hydrogen has the advantage of converting and storing the remaining energy into water-electrolyzed hydrogen through renewable energy generation. In general, due to reasons such as insulation problems, a study on high-pressure hydrogen storage tanks and related parts has recently been conducted. However, in the case of liquid hydrogen, the volume can be reduced by about 800 times or more compared to high-pressure hydrogen gas, so the study on this is needed as a technology that can increase energy density. In this study, the evaporation characteristics were analyzed under fixed heat flux conditions for liquid hydrogen storage tanks and the change in thermal stratification according to sloshing was analyzed. The heat flux condition was fixed at 250 W/m2 and the horizontal resonance frequency of the primary mode was applied to the storage tank. As a result, it was confirmed that the thermal stratification phenomenon decreased compared to the case where the slashing was not present due to forced convection when the slashing was present.

Effect of Refrigerated and Thermal Storage on the Volatile Profile of Commercial Aseptic Korean Soymilk

  • Kim, Hun;Cadwallader, Keith R.;Jeong, Eun-Jeong;Cha, Yong-Jun
    • Preventive Nutrition and Food Science
    • /
    • v.14 no.1
    • /
    • pp.76-85
    • /
    • 2009
  • This study determined the effect of refrigerated and thermal storage on the volatile profile of commercial aseptic soymilk. Volatile components in commercial aseptic soymilk stored either under refrigerated ($4^{\circ}C$) or thermal ($55^{\circ}C$) conditions for 30 days were periodically analyzed by combined solvent-assisted flavor evaporation-gas chromatography-mass spectrometry (SAFE-GC-MS). The concentrations of most of the volatile components, including aldehydes, ketones, alcohols, acids, nitrogen- and sulfur-containing compounds, alkylfurans, furan derivatives and phenolic compounds, were affected to a greater extent by thermal storage compared with refrigerated storage. Profound increases in some volatile compounds with low odor detection thresholds, such as hexanal, octanal, (E)-2-octenal, (E,E)-2,4-decadienal, 1-octen-3-ol, 3-ethyl-2,5-dimethylpyrazine, 2,3-diethyl-5-methylpyrazine, 2-pentylfuran, 4-hydroxy-2,5-dimethyl-3(2H)-furanone, dimethyl trisulfide, guaiacol, 4-vinylguaiacol and 4-vinylphenol, were observed in thermal stored soymilk. The volatile profile changes caused by thermal storage may influence the aroma quality of thermal-stored aseptic soymilk.

Combustion and Exhaust Emission Characteristics by the Change of Intake Air Temperature in a Single Cylinder Diesel Engine (단기통 디젤엔진에서 흡기온도변화에 따른 연소 및 배기특성)

  • Shin, Dalho;Park, Suhan
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.25 no.3
    • /
    • pp.336-343
    • /
    • 2017
  • Intake air conditions, such as air temperature, pressure, and humidity, are very important parameters that influence engine performance including combustion and emissions characteristics. The purpose of this study is to investigate the effects of intake air temperature on combustion and exhaust emissions characteristics in a single cylinder diesel engine. In this experiment, an air cooler and a heater were installed on the intake air line and a gas flow controller was installed to maintain the flow rate. It was found that intake air temperature induced the evaporation characteristics of the fuel, and it affects the maximum in-cylinder pressure, IMEP(indicated mean effective pressure), and fuel consumption. As the temperature of intake air decreases, the fuel evaporation characteristics deteriorate even as the fuel temperature has reached the auto-ignition temperature, so that ignition delay is prolonged and the maximum pressure of cylinder is also reduced. Based on the increase in intake air temperature, nitrogen oxides(NOx) increased. In addition, the carbon monoxide(CO) and unburned hydrocarbons(UHC) increased due to incomplete fuel combustion at low intake air temperatures.

Predicting Micro-Thickness of Phase Fronts in Propellants (추진제의 마이크로 스케일 상면 두께 예측)

  • Yoh Jai-Ick
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.13-21
    • /
    • 2005
  • I consider the structure of steady wave system which is admitted by the continuum equations for materials that undergo phase transformations with exothermic chemical reaction. In particular, the dynamic phase front structures between liquid and gas phases, and solid and liquid phases are computationally investigated. Based on the one-dimensional continuum shock structure analysis, the present approach can estimate the nano-width of waves that are present in combustion. For illustration purpose, n-heptane is used in the evaporation and condensation analysis and HMX is used in the melting and freezing analysis of energetic materials of interest. On-going effort includes extension of this idea to include broad range of liquid and solid fuels, such as rocket propellants.

  • PDF

The Characteristic on Electrical Resistivity of Zno film by Ramped method (선택적 증착에 의해서 제작한 ZnO 박막의 전기저항률 특성)

  • Lee, Woo-Sun;Choi, Kwon-Woo;Cho, Joon-Ho;Park, Jin-Seong;Seo, Yong-Jin;Kim, Sang-Yong;Chung, Yong-Ho;Lee, Jin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.05b
    • /
    • pp.26-29
    • /
    • 2001
  • ZnO thin film had been deposited on the glass by Evaporation Ramped method. and electrical and resistivity were investigated. Evaporation gas($O_{2}$,) pressure was 10mTorr~100mTorr, chamber pressure was $2{\times}10^{-5}$, and then ZnO film were deposited. AI-doped ZnO thin film had the lowest resistivity ($1{\times}10^{4}\;{\Omega}{\cdot}cm$), and then carrier concentration and Hall mobility were$6.27{\times}10^{20}\;cm^{3}$ and $22.04 cm^{2}/V{\cdot}s$, respectively. When ZnO film had been deposited by Ramp6ed method compared with normal method and investigated resistivity.

  • PDF

Research on One Dimensional Dynamic Model in Water Transportation of PEM Fuel Cell

  • Bakhtiar, Agung;You, Jin-Kwang;Park, Jong-Bum;Hong, Boo-Pyo;Choi, Kwang-Hwan
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2012.03a
    • /
    • pp.382-387
    • /
    • 2012
  • Water balance has a significant impact on the overall fuel cell system performance. Proper water management should provide an adequate membrane hydration and avoidance of water flooding in the catalyst layer and gas diffusion layer. Considering the important of advanced water management in PEM fuel cell, this study proposes a simple one dimensional water transportation model of PEM fuel cell for use in a dynamic condition. The model has been created by assumption that the output is the water liquid saturation difference. The liquid saturation change is the total difference between the additional water and the removal water on the system. The water addition is obtained from fuel cell reaction and the electro osmotic drag. The water removal is obtained from capillary transport and evaporation process. The result shows that the capillary water transport of low temperature fuel cell is high because the evaporation rate is low.

  • PDF

Tribological Properties of Cu-Ni Alloy Nanopowders Synthesized by Pulsed Wire Evaporation (PWE) Method (전기 폭발법에 의해 제조된 Cu-Ni 나노 분말의 윤활성 향상)

  • Oh J.S.;Park J.H.;Kim W.W.;Rhee C.K.
    • Journal of Powder Materials
    • /
    • v.11 no.5
    • /
    • pp.376-382
    • /
    • 2004
  • Nanoscale Cu-Ni alloy nanopowders have been produced by a pulsed wire evaporation method in an inert gas. The effect of Cu-Ni alloy nanopowders as additives to motor oil on the tribological properties was studied at room temperature. The worn surfaces were characterized by Scanning Electron Microscopy (SEM) and Energy-Dispersive X-ray Spectroscopy (EDS). Cu-Ni alloy nanopowders as additives lowered coefficient of friction and wear rate. It was found that a copper containing layer on the worn surface was formed, and deposited layers of the metal cladding acted as lubricant on the worn surface, reducing the friction coefficient. It was clearly demonstrated that Cu-Ni alloy nanopowders as additives are able to restore the worn surface and to preserve the friction surfaces from wear.