• Title/Summary/Keyword: Evaporation Intensity

Search Result 96, Processing Time 0.026 seconds

Effects of Combustion Instability by Swirl Intensity in Hybrid Rocket (스월 강도에 따른 하이브리드 로켓의 연소 불안정 영향)

  • Kim, Jungeun;Lee, Sulha;Kim, Ji Eun;Kim, Ji Hye;Yoo, Min Jeong;Han, Songee;Lee, Changjin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.672-674
    • /
    • 2017
  • The addition of swirl is a common technique used in premixed combustors in order to gain stability of the combustion with the improvements in mixing characteristics. recent experimental studies have observed that the addition of swirl oxidizer flow can effectively reduce the combustion instability in hybrid rocket. Investigation was continued to analyze the effect of the swirl on the internal flow of hybrid rocket engine main combustion chamber. The flow influenced by wall blowing as a representation of fuel evaporation interacts with swirling flow. Swirl angle increases, the amplitude of the combustion pressure decrease as the unstable combustion processes. These results suggest that the oxidizer swirling flow by the swirl angle causes the change of the turbulent flow characteristics inside the combustion chamber and suppresses the factors causing the combustion instability.

  • PDF

Photoluminescence Properties of GaN on $MgAl_{2}O_{4}$ Substrate with HVPE Growth Conditions ($MgAl_{2}O_{4}$ 기판위에 GaN의 HVPE 성장조건에 따른 광루미네센스 특성)

  • Kim, Seon-Tae;Lee, Yeong-Ju
    • Korean Journal of Materials Research
    • /
    • v.8 no.8
    • /
    • pp.667-671
    • /
    • 1998
  • The photoluminescence (pL) characteristics of hydride vapor phase epiyaxy (HVPE) grown GaN films on $MgAl_{2}O_{4}$ substrate were investigated with several growth conditions. The GaN films on $MgAl_{2}O_{4}$ substrate is autodoped with Mg atoms which thermally out-diffused from substrate lead to a PL characteristics of impurity doped ones. The Mg-related emission band intensity decreased with growth temperature may due to the evaporation of Mg atoms at the GaN film surfaces. and it also decreased with GaN film thicknesses. We can estimate the diffusion coefficient of Mg atoms in GaN under the consideration of diffusion phenomena between two infinite solids lead to a value of D= 2$\times$$lO^{-10}\textrm{cm}^2/sec.

  • PDF

Fabrication and performance evaluation of ultraviolet photodetector based on organic /inorganic heterojunction

  • Abdel-Khalek, H.;El-Samahi, M.I.;Salam, Mohamed Abd-El;El-Mahalawy, Ahmed M.
    • Current Applied Physics
    • /
    • v.18 no.12
    • /
    • pp.1496-1506
    • /
    • 2018
  • Organic/inorganic ultraviolet photodetector was fabricated using thermal evaporation technique. Organic/inorganic heterojunction based on thermally evaporated copper (II) acetylacetonate thin film of thickness 200 nm deposited on an n-type silicon substrate is introduced. I-V characteristics of the fabricated heterojunction were investigated under UV illumination of intensity $65mW/cm^2$. The diode parameters such as ideality factor, n, barrier height, ${\Phi}_B$, and reverse saturation current, $I_s$, were determined using thermionic emission theory. The series resistance of the fabricated diode was determined using modified Nord's method. The estimated values of series resistance and barrier height of the diode were about $0.33K{\Omega}$ and 0.72 eV, respectively. The fabricated photodetector exhibited a responsivity and specific detectivity about 9 mA/W and $4.6{\times}10^9$ Jones, respectively. The response behavior of the fabricated photodetector was analyzed through ON-OFF switching behavior. The estimated values of rise and fall time of the present architecture under UV illumination were about 199 ms and 154 ms, respectively. Finally, enhancing the photoresponsivity of the fabricated photodetector, post-deposition plasma treatment process was employed. A remarkable modification of the device performance was noticed as a result of plasma treatment. These modifications are representative in a decrease of series resistance and an increase of photoresponsivity and specific detectivity. The process of plasma treatment achieved an increment of external quantum efficiency from 5.53% to 8.34% at -3.5 V under UV illumination.

Effect of roasting degree of barley on aroma characteristics of boricha (보리의 로스팅 정도가 보리차의 향 특성에 미치는 영향)

  • Joung, Woo-Young;Kim, Su-Jeong;Kim, Byeong-Goo;Hurh, Byung-Serk;Baek, Hyung-Hee
    • Korean Journal of Food Science and Technology
    • /
    • v.50 no.2
    • /
    • pp.123-131
    • /
    • 2018
  • The objective of this study was to evaluate the effect of roasting degree of barley on aroma characteristics of boricha (barley tea) using solvent-assisted flavor evaporation-gas chromatography-mass spectrometry and gas chromatography-olfactometry. Fifteen volatile compounds including pyrazine, ethylpyrazine, butyrolactone, and guaiacol were considered important volatile compounds, which are generated by roasting barley, because concentrations of those volatiles were significantly increased (p<0.05) as roasting degree of barley was darker. Guaiacol (smoky), furfuryl alcohol (burnt sugar), and furfural (caramel) were detected as aroma-active compounds of boricha with high intensity. Aroma intensity of aroma-active compounds in boricha increased with increase in roasting degree of barley. However, one unknown compound with burnt smell was detected as off-flavor in dark roasted barley. Therefore, it is implied that medium roasting of barley is desirable during boricha manufacturing. Furthermore, boricha manufactured with steamed barley contained more abundant volatile flavor compounds, which may lead to better aroma quality of boricha.

Fabrication of Schottky Device Using Lead Sulfide Colloidal Quantum Dot

  • Kim, Jun-Kwan;Song, Jung-Hoon;An, Hye-Jin;Choi, Hye-Kyoung;Jeong, So-Hee
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.189-189
    • /
    • 2012
  • Lead sulfide (PbS) nanocrystal quantum dots (NQDs) are promising materials for various optoelectronic devices, especially solar cells, because of their tunability of the optical band-gap controlled by adjusting the diameter of NQDs. PbS is a IV-VI semiconductor enabling infrared-absorption and it can be synthesized using solution process methods. A wide choice of the diameter of PbS NQDs is also a benefit to achieve the quantum confinement regime due to its large Bohr exciton radius (20 nm). To exploit these desirable properties, many research groups have intensively studied to apply for the photovoltaic devices. There are several essential requirements to fabricate the efficient NQDs-based solar cell. First of all, highly confined PbS QDs should be synthesized resulting in a narrow peak with a small full width-half maximum value at the first exciton transition observed in UV-Vis absorbance and photoluminescence spectra. In other words, the size-uniformity of NQDs ought to secure under 5%. Second, PbS NQDs should be assembled carefully in order to enhance the electronic coupling between adjacent NQDs by controlling the inter-QDs distance. Finally, appropriate structure for the photovoltaic device is the key issue to extract the photo-generated carriers from light-absorbing layer in solar cell. In this step, workfunction and Fermi energy difference could be precisely considered for Schottky and hetero junction device, respectively. In this presentation, we introduce the strategy to obtain high performance solar cell fabricated using PbS NQDs below the size of the Bohr radius. The PbS NQDs with various diameters were synthesized using methods established by Hines with a few modifications. PbS NQDs solids were assembled using layer-by-layer spin-coating method. Subsequent ligand-exchange was carried out using 1,2-ethanedithiol (EDT) to reduce inter-NQDs distance. Finally, Schottky junction solar cells were fabricated on ITO-coated glass and 150 nm-thick Al was deposited on the top of PbS NQDs solids as a top electrode using thermal evaporation technique. To evaluate the solar cell performance, current-voltage (I-V) measurement were performed under AM 1.5G solar spectrum at 1 sun intensity. As a result, we could achieve the power conversion efficiency of 3.33% at Schottky junction solar cell. This result indicates that high performance solar cell is successfully fabricated by optimizing the all steps as mentioned above in this work.

  • PDF

Effects of barley roasting methods on the aroma characteristics of boricha (보리의 로스팅법에 따른 보리차의 향 특성)

  • Joung, Woo-Young;Kim, Su-Jeong;Kim, Byeong-Goo;Hurh, Byung-Serk;Baek, Hyung-Hee
    • Korean Journal of Food Science and Technology
    • /
    • v.50 no.5
    • /
    • pp.464-473
    • /
    • 2018
  • The objective of the current study was to evaluate the effects of roasting methods on volatile flavor compounds of boricha using solvent-assisted flavor evaporation-gas chromatography (GC)-mass spectrometry and GC-olfactometry. The barley roasting methods tested were air roasting (AR), drum roasting (DR), and air/drum roasting (ADR). Twenty, twenty-one, and eighteen aroma-active compounds were detected in the products of AR, DR, and ADR, respectively. Guaiacol (smoky), 2-acetylpyrazine (almond-like), and furfuryl alcohol (burnt sugar-like) were detected as high intensity aroma-active compounds. Intensities of most aroma-active compounds produced by the DR method were higher. On the other hand, aroma intensities of phenols produced by the AR method, such as guaiacol and 2-methoxy-4-vinylphenol (curry-like), tended to be stronger. Aroma characteristics of phenols are not considered to be desirable for boricha. Although roasting time for DR was longer than that for AR, DR may be an effective barley roasting method for enhancing desirable aroma characteristics of boricha.

DIAGNOSTICS OF PLASMA INDUCED IN Nd:YAG LASER WELDING OF ALUMINUM ALLOY

  • Kim, Jong-Do;Lee, Myeong-Hoon;Kim, Young-Sik;Seiji Katayama;Akira Matsunawa
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.612-619
    • /
    • 2002
  • The dynamic behavior of Al-Mg alloys plasma was very unstable and this instability was closely related to the unstable motion of keyhole during laser irradiation. The keyhole fluctuated both in size and shape and its fluctuation period was about 440 ${\mu}{\textrm}{m}$. This instability has been estimated to be caused by the evaporation phenomena of metals with different boiling point and latent heats of vaporization. Therefore, the authors have conducted the spectroscopic diagnostics of plasma induced in the pulsed YAG laser welding of Al-Mg alloys in air and argon atmospheres. In the air environment, the identified spectra were atomic lines of Al, Mg, Cr, Mn, Cu, Fe and Zn, and singly ionized Mg line, as well as strong molecular spectrum of AlO, MgO and AIH. It was confirmed that the resonant lines of Al and Mg were strongly self-absorbed, in particular in the vicinity of pool surface. The self-absorption of atomic Mg line was more eminent in alloys containing higher Mg. These facts showed that the laser-induced plasma was relatively a low temperature and high density metallic vapor. The intensities of molecular spectra of AlO and MgO were different each other depending on the power density of laser beam. Under the low power density irradiation condition, the MgO band spectra were predominant in intensity, while the AlO spectra became much stronger in higher power density. In argon atmosphere the band spectra of MgO and AlO completely vanished, but AlH molecular spectra was detected clearly. The hydrogen source was presumably the hydrogen solved in the base Metal, absorbed water on the surface oxide layer or H$_2$ and $H_2O$ in the shielding gas. The temporal change in spectral line intensities was quite similar to the fluctuation of keyhole. The time average plasma temperature at 1 mm high above the surface of A5083 alloy was determined by the Boltzmann plot method of atomic Cr lines of different excitation energy. The obtained electron temperature was 3, 280$\pm$150 K which was about 500 K higher than the boiling point of pure aluminum. The electron number density was determined by measuring the relative intensities of the spectra1lines of atomic and singly ionized Magnesium, and the obtained value was 1.85 x 1019 1/㎥.

  • PDF

Fabrication and Performance of Microcolumnar CsI:Tl onto Silicon Photomultiplier (실리콘광증배관 기반의 미세기둥 구조 CsI:Tl 제작 및 평가)

  • Park, Chan-Jong;Kim, Ki-Dam;Joo, Koan-Sik
    • Journal of IKEEE
    • /
    • v.20 no.4
    • /
    • pp.337-343
    • /
    • 2016
  • This study conducted the gamma ray spectroscopic analysis of the microcolumnar CsI:Tl deposited onto the SiPMs using thermal evaporation deposition. The SEM measured thickness of microcolumnar CsI:Tl and of its individual columns. From the SEM observation, the measured thickness of CsI:Tl were $450{\mu}m$ and $600{\mu}m$. The gamma ray spectroscopic properties of microcolumnar CsI:Tl, $450{\mu}m$ and $600{\mu}m$ thick deposited onto the SiPMs were analyzed using standard gamma ray sources $^{133}Ba$ and $^{137}Cs$. The spectroscopic analysis of microcolumnar CsI:Tl deposited onto the SiPMs included the measurements of response linearity over the $^{137}Cs$ gamma ray intensity; and gamma ray energy spectrum. Furthermore from the gamma ray spectrum measurement of $^{133}Ba$ and $^{137}Cs$, $450{\mu}m$ thick CsI:Tl showed good efficiency when measured with $^{133}Ba$ and $600{\mu}m$ thick CsI:Tl was highly efficient when measured with $^{137}Cs$.

Effect of the catalyst deposition rates on the growth of carbon nanotubes

  • Ko, Jae-Sung;Choi, In-Sung;Lee, Nae-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.264-264
    • /
    • 2010
  • Single-walled carbon nanotubes (SWCNTs) were grown on a Si wafer by using thermal chemical vapor deposition (t-CVD). We investigated the effect of the catalyst deposition rate on the types of CNTs grown on the substrate. In general, smaller islands of catalyst occur by agglomeration of a catalyst layer upon annealing as the catalyst layer becomes thinner, which results in the growth of CNTs with smaller diameters. For the same thickness of catalyst, a slower deposition rate will cause a more uniformly thin catalyst layer, which will be agglomerated during annealing, producing smaller catalyst islands. Thus, we can expect that the smaller-diameter CNTs will grow on the catalyst deposited with a lower rate even for the same thickness of catalyst. The 0.5-nm-thick Fe served as a catalyst, underneath which Al was coated as a catalyst support as well as a diffusion barrier on the Si substrate. The catalyst layers were. coated by using thermal evaporation. The deposition rates of the Al and Fe layers varied to be 90, 180 sec/nm and 70, 140 sec/nm, respectively. We prepared the four different combinations of the deposition rates of the AI and Fe layers. CNTs were synthesized for 10 min by flowing 60 sccm of Ar and 60 sccm of $H_2$ as a carrier gas and 20 sccm of $C_2H_2$ as a feedstock at 95 torr and $810^{\circ}C$. The substrates were subject to annealing for 20 sec for every case to form small catalyst islands prior to CNT growth. As-grown CNTs were characterized by using field emission scanning electron microscopy, high resolution transmission electron microscopy, Raman spectroscopy, UV-Vis NIR spectroscopy, and atomic force microscopy. The fast deposition of both the Al and Fe layers gave rise to the growth of thin multiwalled CNTs with the height of ${\sim}680\;{\mu}m$ for 10 min while the slow deposition caused the growth of ${\sim}800\;{\mu}m$ high SWCNTs. Several radial breathing mode (RBM) peaks in the Raman spectra were observed at the Raman shifts of $113.3{\sim}281.3\;cm^{-1}$, implying the presence of SWCNTs (or double-walled CNTs) with the tube diameters 2.07~0.83 nm. The Raman spectra of the as-grown SWCNTs showed very low G/D peak intensity ratios, indicating their low defect concentrations.

  • PDF

Multimode fiber-optic pressure sensor based on dielectric diaphragm (유전체 다이아프램을 이용한 다모드 광섬유 압력센서)

  • 김명규;권대혁;김진섭;박재희;이정희;손병기
    • Journal of the Korean Vacuum Society
    • /
    • v.6 no.3
    • /
    • pp.220-226
    • /
    • 1997
  • An optical intensity-type pressure sensor has been fabricated by coupling multimode optical fiber with 100 nm-Au/30 nm-NiCr/150 nm-$Si_3N_4/300 nm-SiO_2/150 nm-Si_3N_4$ optical reflection layer supported by micromachined frame-shape silicon substrate, and its characteristics was investigated. For the application of $Si_3N_4/SiO_2/Si_3N_4$ diaphragm to the optical reflection layer of the sensor, NiCr and Au films were deposited on the backside of the diaphragm by thermal evaporation , respectively, and thus optical low caused by transmission in the reflection layer could be decreased to a few percents. Dielectric diaphragms with uniform thickness were able to be also reproduced because top- and bottom-$Si_3N_4$ layer of the diaphragm could automatically stop silicon anisotropic etching. The respective pressure ranges in which the sensor showed linear optical output power-pressure characteristics were 0~126.64 kPa, 0~79. 98 kPa, and 0~46.66 kPa, and the respective pressure sensitivities of the sensor were about 20.69 nW/kPa, 26.70 nW/kPa, and 39.33 nW/kPa, for the diaphragm sizes of 3$\times$3 $\textrm{mm}^2$, 4$\times$4 $\textrm{mm}^2$, and 5$\times$5 $\textrm{mm}^2$, indicating that the sensitivity increases as diaphragm size increases.

  • PDF