• Title/Summary/Keyword: Evaporation

Search Result 3,570, Processing Time 0.034 seconds

Characteristic of Evaporation Cooling in Water Droplet Impinging on Steel with Various Surface Roughness and Droplet Diameter (강에서 표면조도의 변화와 액적 직경에 따른 충돌 액적 증발 냉각 특성)

  • Jang, C.S.;Sohn, C.H.;Chung, S.W.;Choi, W.S.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.19 no.3
    • /
    • pp.141-148
    • /
    • 2006
  • An experimental study is presented for water droplet impingement on a steel surface in the process of heat treatment. The objective of the present work is to examine characteristic of evaporation cooling due to surface roughness and droplet diameter under conductive heat input condition. The surface temperatures varied from $80{\sim}155^{\circ}C$, surface roughness was from $R_a=0.12{\mu}m$ to $R_a=1.14{\mu}m$ and droplet diameter was from 2.4 mm to 3.0 mm. The results show that the total evaporation time is shorter for the larger surface roughness and the smaller droplet size, the time average heat flux has maximum value for the larger surface roughness and the smaller droplet size. The total evaporation time has not influence on the nuclear boiling region.

An Experimental Study on the Cooling of Unburned Surface due to Water Droplet (물액적에 의한 미연소면의 냉각에 관한 실험적 연구)

  • 방창훈;김정수;예용택
    • Fire Science and Engineering
    • /
    • v.14 no.3
    • /
    • pp.13-18
    • /
    • 2000
  • The objective of the present work is to examine the cooling characteristics of water droplet on the unburned surface. The hot solid surface material used brass, carbon steel and copper at temperature ranging from 70 to $116^{\circ}$. the droplet size is from 2.4 mm to 3.0 mm. The CCD camera was used to record the evaporation histories of the droplets. and the evaporation time of the droplet on the hot solid surface could be determined by using frame-by-frame analysis of the video records. It is found that during the droplet evaporation process for copper the temperature remains nearly constant, whereas for carbon steel the temperature continuously decreases about $1^{\circ}$. During the droplet evaporation process on the hot solid surface, regardless of solid materials, nondimensional droplet volume decreases nondimensional evaporation time increases.

  • PDF

Analysis of PDP Discharging Properties Depending on Electron Beam Evaporation Rate of MgO Layer (MgO의 전자선 증착율에 따른 PDP 방전 특성 분석)

  • Kim, Yong-Jae;Kwon, Sang-Jik
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.8
    • /
    • pp.716-719
    • /
    • 2007
  • The effects of the evaporation rate of MgO films using an electron beam on the MgO properties and the discharge characteristics of a plasma display panel (PDP) were investigated and analyzed. MgO films were deposited with the various MgO evaporation rates. The MgO properties such as the crystal orientation, the surface roughness, and the film structure were inspected using XRD (X-ray diffraction), AFM (atomic force microscopy). From the experiments and Paschen law, the maximum value of the secondary electron emission coefficient $({\gamma})$ was obtained at the evaporation rate of $5{\AA}/sec$. The XRD results and cathode-luminescence (CL) spectra show the ${\gamma}$ values are correlated with F/F+ centers of the molecular structure of MgO films. The minimum firing voltage and the maximum luminous efficiency were obtained at an evaporation rate of $5{\AA}/sec$. In the MgO film deposited at $5{\AA}/sec$, the (200) orientation and F+ center were most intensive.

Influence of Refrigeration Oil on Evaporation Heat Transfer of R-134a in a Horizontal Micro-Fin Tube (냉동유가 수평 마이크로 핀관내 R-134a의 증발열전달에 미치는 영향)

  • 배상철;강태욱;김정훈;정찬영;김종수
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.8 no.1
    • /
    • pp.140-150
    • /
    • 1996
  • CFC-12, which has been used most widely in automobile air conditioners and household refrigerators is scheduled to be phased out soon because of its high ozone depletion potential. Now HFC-134a is suggested as an alternative refrigerant for CFC-12. In this Study, we intended to investigate how PAG oil influence evaporation heat transfer and flow pattern, using R-134a and PAG oil influences evaporation heat transfer and flow pattern, using R-134a and PAG oil in the horizontal miro-fin evaporation tube. Experiments were conducted under the flowing est conditions : mass velocity 86-250kg/$m^2$s, heat flux 5-30 ㎾/$m^2$, oil concentration 0-21 wt.% and saturation temperature 5$^{\circ}C$. Local evaporation heat transfer coefficients were found to be higher at the top, side and bottom of the tube in this order. Average heat transfer coefficients turned out to increase with oil concentration increment up to 3 wt.% oil concentration, whereas heat transfer coefficients gradually decreased over 3 wt.% oil concentration, because of oil-rich liquid film was formed on the heat transfer surface. Flow patterns were rapidly transitioned to annular regimes up to 3 wt.% oil concentration. In case of pure refrigerant, measured heat transfer coefficients in the experiments were similar to those of Kandlikar's correlation.

  • PDF

Experimental Study of the Evaporation of Spreading Liquid Nitrogen (확산하는 액체질소의 증발에 관한 실험적 연구)

  • KIM, MYUNGBAE;CHOI, BYUNGIL;KIM, TAE-HOON;DO, KYHYUNG;HAN, YONGSHIK;CHUNG, KYUNGYUL
    • Journal of Hydrogen and New Energy
    • /
    • v.29 no.5
    • /
    • pp.466-472
    • /
    • 2018
  • The investigation of cryogenic liquid pool spreading is an essential procedure to assess the hazard of cryogenic liquid usage. In this experimental study, to measure the evaporation velocity when the pool is spreading, liquid nitrogen was continuously released onto unconfined concrete ground. Almost all of the reported results are based on a non-spreading pool in which cryogenic liquid is instantaneously poured onto bounded ground for a very short period of time. A simultaneous measurement of the pool location using thermocouples and of the pool mass using a digital balance was carried out to measure the evaporation velocity and the pool radius. A greater release flow rate was found to result in a greater average evaporation velocity, and the evaporation velocity decreased with the spreading time and the pool radius.

Liquid Crystal Aligning Capabilities for Nematic Liquid Crystal on the ZrOx Thin Film Layer with E-beam Evaporation

  • Kim, Mi-Jung;Han, Jin-Woo;Kim, Young-Hwan;Kim, Byoung-Yong;Han, Jeong-Min;Moon, Hyun-Chan;Park, Kwang-Bum;Seo, Dae-Shik
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.378-378
    • /
    • 2007
  • In this study, liquid crystal (LC) aligning capabilities for homeotropic alignment on the $ZrO_x$ thin film by electron beam evaporation method were investigated. Also, the control of pretilt angles and thermal stabilities of the NLC treated on $ZrO_x$ thin film were investigated. The uniform LC alignment on the $ZrO_x$ thin film surfaces and good thermal stabilities with electron beam evaporation can be achieved. It is considerated that the LC alignment on the $ZrO_x$ thin film by electron beam evaporation is attributed to elastic interaction between LC molecules and micro-grooves at the $ZrO_x$ thin film surface created by evaporation. In addition, it can be achieved the good electro-optical (EO) properties of the VA-LCD on $ZrO_x$ thin film layer with. oblique electron beam evaporation.

  • PDF

Evaporation Characteristics of Oil and Abundance Ratio of Hydrocarbon Compounds at Different Temperatures (온도 변수에 대한 유류의 휘발특성 및 탄화수소 화합물의 존재비에 관한 연구)

  • Choi, Jung-Sik
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.7
    • /
    • pp.1116-1123
    • /
    • 2021
  • Oil spilled in seawater undergoes physical and chemical changes as well as biological degradation through various weathering processes, such as evaporation, diffusion, dispersion, emulsification, dissolution, oxidation, and sedimentation. Evaporation is one of the most immediate and prompt weathering processes, and it has the greatest influence on majority of pollutants. In this study, the evaporation characteristics of different oil samples were studied; the volatilization characteristics of gasoline, kerosene, and diesel were compared at average seawater (25 ℃) and near-equator (35 ℃) temperatures. The oil samples were pre-treated and then collected at regular intervals. Gas chromatography-mass spectrometry analysis was performed, and the changes in the amount of the hydrocarbons were calculated.

Heat Transfer Analysis of Concrete Members Considering Evaporation Heat under High Temperature (고온 하에서 기화열을 고려한 철근콘크리트 부재의 온도해석)

  • Lee, Taegyu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.4A
    • /
    • pp.355-363
    • /
    • 2009
  • When water inside the concrete member evaporates by high temperature, the evaporation heat which absorbs surrounding temperature occurs. The rate of increment of the internal temperature in concrete is reduced due to the evaporation heat in spite of continuously increasing external temperature. In this paper, the prediction method of internal temperature of concrete members considering the evaporation heat under the high temperature is presented. Finite element method is employed to facilitate thermal analysis for any position of member. And the thermal characteristics models of high strength concrete affected by high temperature are proposed. To demonstrate the validity of this numerical procedure, the prediction by the proposed algorithm is compared with the test results of other researchers. The proposed algorithm shows a good agreement with the experimental results including the phenomenon that temperature is lost by the evaporation heat.

An evaluation of evaporation estimates according to solar radiation models (일사량 산정 모델에 따른 증발량 분석)

  • Rim, Chang-Soo
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.12
    • /
    • pp.1033-1046
    • /
    • 2019
  • To evaluate the utilization suitability of solar radiation models, estimated solar radiation from 13 solar radiation models were verified by comparing with measured solar radiation at 5 study stations in South Korea. Furthermore, for the evaluation of evaporation estimates according to solar radiation models, 5 different evaporation estimation equations based on Penman's combination approach were applied, and evaporation estimates were compared with pan evaporation. Some solar radiation models require only meteorological data; however, some other models require not only meteorological data but also geographical data such as elevation. The study results showed that solar radiation model based on the ratio of the duration of sunshine to the possible duration of sunshine, maximum temperature, and minimum temperature provided the estimated solar radiation that most closely match measured solar radiation. Accuracy of estimated solar radiation also greatly improved when Angstrőm-Prescott model coefficients are adjusted to the study stations. Therefore, when choosing the solar radiation model for evaporation estimation, both data availability and model capability should be considered simultaneously. When applying measured solar radiation for estimating evaporation, evaporation estimates from Penman, FAO Penman-Monteith, and KNF equations are most close to pan evaporation rates in Jeonju and Jeju, Seoul and Mokpo, and Daejeon respectively.

The Influence of Evaporation from a Stream on Fog Events in the Middle Nakdong River (낙동강 중류에서 하천 증발이 안개에 미치는 영향)

  • Park, Jun Sang;Kim, Kyu Rang;Kang, Misun;Kim, Baek-Jo
    • Journal of the Korean earth science society
    • /
    • v.38 no.6
    • /
    • pp.395-404
    • /
    • 2017
  • In this study, we classified observed fog events in the Middle Nakdong River near Gumi and analyzed the meteorological characteristics before and after the fog formation. The observation was performed from 2013 to 2015 using visibility meter. A total of 74 fog events were observed and most of them were classified as steam fog. The duration of observed steam fogs was longer than that of typical inland fogs because the nocturnal evaporation from the water surface was enhanced by the topographical characteristics. In order to analyze the effect of evaporation from the stream on the fog duration, the evaporation was estimated using the Penman-Monteith and the Bulk aerodynamic methods. The estimated evaporation by the Bulk method was similar to the actual evaporation from the water surface. Therefore, the Bulk method is suitable for estimating the evaporation from water surface. The evaporation amount, estimated by using the Bulk method was higher on fog days than non-fog days at 06 LST and 07 LST. The added evaporation of fog days released latent heat to the atmosphere and provided energy to maintain the turbulence in the fog. This phenomenon was confirmed by the increase of wind speed, temperature and turbulent kinetic energy within the fog.