• 제목/요약/키워드: Evaporating latent heat

검색결과 8건 처리시간 0.022초

수 이젝터를 이용한 밀폐형 진공탱크내의 온도저감 특성 (Characteristics of Cooling Down in the Enclosed Vacuum Tank by Water Driving Ejector)

  • 김세현;신유식;배강열;이윤환;정효민;정한식
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.700-705
    • /
    • 2003
  • The general cooling tower is a device for making a cooling water in refrigerant condensers or industrial process heat exchangers. The present cooling tower have defects with noises, complicated structure and environmental problems. In this paper, we constituted a new water cooling system by using a evaporating latent heat in an enclosed tank, and this system is consisted of an enclosed vacuum tank and water driving ejector system. Several experimental cases were carried out for improvement methods of high vacuum pressure and water cooling characteristics. The ejector performance was tested in case of water temperature variations that flows in the ejector. Based on the vacuum pressure by water driving ejector, the water cooling characteristics were investigated for the vaporized air condensing effects.

  • PDF

냉열잠열축열조의 성능해석 (Performance of the Cold Latent Storage System)

  • 윤호식;노승탁
    • 대한설비공학회지:설비저널
    • /
    • 제17권4호
    • /
    • pp.456-465
    • /
    • 1988
  • The performance of the cold latent heat storage is investigated by experiment and by a simplified analytic approach. The heat storage tank has eight horizontal circular tubes and one path of refrigerant evaporating tube. The phase change material in the heat storage tank is water which is frozen by evaporating refrigerant of refrigeration system and melts by the warm air in the heat storage tank. In the experiment, the performance has been studied by the various conditions including the initial water temperature on solidification and flow rate and temperature of air. The rate of recovered heat has been simulated by a simplified model and the results shows a good agreement. In solidification process, initial water temperature causes time delay corresponding to the sensible heat and it is found that the shape of evaporator is important. In melting process, the recovered heat rate from the heat storage tank is proportional to $Re^{0.8}(T_{bi}-T_f)$ of air where $T_{bi}$ and $T_f$ indicate temperatures of inlet air and phase change, respectively. And the deminishing rate of the recovered heat is higher for the higher heat rate.

  • PDF

에젝터 구동 저압 증발하에서 물의 열교환 특성 (Heat Exchange Charaterictics of Water under the Low Pressure by driving Ejector)

  • 신유식;이윤환;이상철;김세현;정효민;정한식
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.1885-1890
    • /
    • 2003
  • The cooling tower is a device for making a cooling water in the air conditioning system of building, and there are many kinds of cooling tower system for air conditioner. In this paper, we introduced the water cooling system with an enclosed tank and water ejecting system for evaporating the water in tank. The city water was used for a working fluid, and the cooling water is generated by evaporating latent heat in the tank with a $25{\sim}50mmHg$. The time to reaching this vacuum pressure was about $20{\sim}30minutes$, and cooling water was obtained the value of temperature difference ${\Delta}T=7^{\circ}C$.

  • PDF

냉매 과냉각 시스템을 이용한 열펌프의 성능향상에 관한 연구 (Performance Enhancement of the Heat Pump Using the Refrigerant Subcooling System)

  • 손창효;윤찬일;박승준;이동건;오후규
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2001년도 춘계학술대회 논문집
    • /
    • pp.106-111
    • /
    • 2001
  • The performance characteristics of heat pump system using the new refrigerant subcooling system were investigated. The new heat pump system has the ice storage tank to accumulate the latent heat of the refrigerant during the night-time. The heat is released to subcool the saturated refrigerant liquid at the outlet of a condenser in the daytime. The experimental apparatus is a well-instrumented heat pump which consisted of a refrigerant loop and a coolant loop. The test sections(condenser and evaporator) were made of tube-in-tube heat exchanger with the horizontal copper tube of 12.7[mm] outer diameter and 9.5[mm] inner diameter. The evaporating temperatures ranged from $-5[^{\circ}C]$ to $0[^{\circ}C]$ and the subcooling degrees of the refrigerant varied from $15[^{\circ}C]$ to $25[^{\circ}C]$. The test of the ice storage was carried out at evaporating temperature of $-10[^{\circ}C]$ and the ice storage mode is an ice-on-coil type. The main results were summarized as follows ; The refrigerant mass flow rate and compressor shaft power of the heat pump system were independent of the subcooling degrees. The cooling capacity o the heat pump system increases as the evaporating temperature and subcooling degree increases. The cooling capacity of the heat pump system is about 25 to 30% higher than that of normal heat pump system. The COP of the heat pump system which subcooled the refrigerant liquid at the outlet of the condenser is about 28% higher than that of the normal heat pump system.

  • PDF

온수 가열 바닥 난방 시스템용 고성능 버블젯 루프 히트파이프 개발 (Development of High Performance Bubble Jet Loop Heat Pipe for Hot Water Floor Heating System)

  • 김종수;권용하;김정웅
    • 동력기계공학회지
    • /
    • 제18권4호
    • /
    • pp.23-28
    • /
    • 2014
  • In order to increase the performance of conventional hot water floor heating system, the bubble jet loop heat pipe for the system was developed. This experiment was conducted under next conditions : Working fluid was R-134a, charging ratio was 50%. A temperature of hot water, room temperature and flow rate were $60^{\circ}C$, $15^{\circ}C$ and 0.5~1.5 kg/min, respectively. The experimental results, show that bubble jet loop heat pipe had a high effective thermal conductivity of $4714kW/m^{\circ}C$ and a sufficient heat flux of $73W/m^2$ to heat the floor to $35^{\circ}C$ in case of the 1.5 kg/min of flow rate. So the bubble jet loop heat pipe has a possibility for appling of the floor heating system. Additionally, the visualization of bubble jet loop heat pipe was performed to understand the operating principle. Bubbles made by the narrow gap between inner tube and outer tube of evaporating part generate pulsation at liquid surface of working fluid. The pulsation had slug flow and wavy flow. So working fluid circulates in the bubble jet loop heat pipe as two phase flow pattern. And large amount of heat is transferred by the latent heat from evaporating part to condensing part.

증발식 해수담수화설비의 에너지 소모량에 관한 연구 (A study on the required energy of a thermal type desalination plant)

  • 송치성
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제38권9호
    • /
    • pp.1094-1100
    • /
    • 2014
  • 오폐수처리, 해수담수화 및 식품산업의 경우 증발과정은 필수공정이며, 이는 기본적으로 용액으로부터 용매인 순수한 물성분을 추출하여 점차 용액의 농도를 증가시키는 방식이다. 농축을 위한 방식은 전기투석, 증발식, 막방식 등의 다양한 방법이 사용되고 있으나, 본 연구에서는 여러 산업분야에서 적용되고 있는 증발식을 대상으로 운전방식에 따른 가열열원의 소모량을 이론적으로 분석하고, 이에 근거하여 다단증발식 해수담수화설비의 운전특성을 파악하였다. 본 연구의 결과에 따르면 시스템에서 이용할 수 있는 전체 온도차, 즉 인입해수의 온도와 1단 증발부로 유입되는 해수온도와의 차를 기준으로 증발단의 수를 증가시킬수록 에너지효율이 상승함을 알 수 있었다.

CA저장 기체조성에 따른 사과 Fuji의 증산속도 (Effects of Storage Gas Concentrations on the Transpiration Rate of Fuji Apple during CA Storage)

  • 강준수;정헌식;최종욱
    • 한국식품저장유통학회지
    • /
    • 제9권3호
    • /
    • pp.261-266
    • /
    • 2002
  • CA저장 중 저장기체 조성에 따른 사과 Fuji의 증산속도를 측정하고, 같은 조건에서 증산속도를 예측하기 위한 수학적 모델을 설정하여 증산속도를 예측하였다. 온도 $0^{\circ}C$, 상대습도 98%, 공기 유속 0.25m/s의 저장조건에서 6주 동안 CA저장하였을 때 사과 Fuji의 호흡속도는 일반저온저장에 비하여 50%이하로 낮출 수 있었다. 같은 저장조건에서 일반저온저장에서의 사과의 증산속도가 CA저장에 비하여 50~70 % 높았으며, 일정한 산소농도의 CA저장에서는 저장기체 중 이산화탄소농도가 높을수록 증산속도는 감소하는 것으로 나타났다. 본 연구에서 채택한 모델로 예측한 증산속도는 실측치와 유사한 값을 나타내어 본 연구에서 채택한 모델로 CA 저장 중 저장기체 조성에 따른 사과 Fuji의 증산속도를 잘 예측할 수 있었다. 사과의 증산속도는 호흡열량에 비례하여 증가하는 경향을 나타내었으나 증산속도의 증가폭은 호흡열량의 증가폭에 미치지 못하였다. 이는 호흡열량이 증가하면 사과의 증발표면의 온도가 높아져서 증산속도가 커질 수 있게 되지만, 증산속도의 증가에 따른 증발잠열의 증가가 증발표면의 온도를 미세하게 낮추어 주므로 일어나는 현상으로 볼 수 있다.

증발기의 압력강하에 대한 상대습도의 영향 (Effects of Relative Humidity on the Evaporator Pressure Drop)

  • 김창덕;강신형;박일환;이진호
    • 설비공학논문집
    • /
    • 제16권5호
    • /
    • pp.397-407
    • /
    • 2004
  • It is well known that some key parameters, such as evaporating temperature, refrigerant mass flow rate, face velocity and inlet air temperature, have significant influence on the evaporator performance. However performance studies related to a humid environment have been very scarce. It is demonstrated that the refrigerant mass flow rate, heat flux, water condensing rate and air outlet temperature of the evaporator significantly increase with air inlet relative humidity. As the air inlet relative humidity increases, the latent and total heat transfer rates increase, but the sensible heat transfer rate decreases. The purpose of this study is to provide experimental data on the effect of air inlet relative humidity on the air and refrigerant side pressure drop characteristics for a slit fin-tube heat exchanger. Experiments were carried out under the conditions of inlet refrigerant saturation temperature of 7 $^{\circ}C$ and mass flux varied from 150 to 250 kg/$m^2$s. The condition of air was dry bulb temperature of 27$^{\circ}C$, air Velocity Varied from 0.38 to 1.6 m/s. Experiments Showed that air Velocity decreased 8.7% on 50% of relative humidity 40% of that at degree of superheat of 5$^{\circ}C$, which resulted that pressure drop of air and refrigerant was decreased 20.8 and 8.3% for 50% of relative humidity as compared to 40%, respectively.