• Title/Summary/Keyword: Evaluation of the Orthogonality

Search Result 17, Processing Time 0.026 seconds

Graphical Methods for Evaluating the Degree of the Orthogonality of Nearly Orthogonal Arrays (근사직교배열의 직교성의 정도를 평가하기 위한 그레픽방법)

  • Jang Dae-Heung
    • Journal of Korean Society for Quality Management
    • /
    • v.32 no.4
    • /
    • pp.220-228
    • /
    • 2004
  • The orthogonality is an important property in the experimental designs. When we use nearly orthogonal arrays, we need evaluate the degree of the orthogonality of given experimental designs. Graphical methods for evaluating the degree of the orthogonality of nearly orthogonal arrays are suggested.

Graphical Methods for Evaluating Supersaturated Designs (초포화계획을 평가하기 위한 그래픽방법)

  • Kim, Youn-Gil;Jang, Dae-Heung
    • The Korean Journal of Applied Statistics
    • /
    • v.23 no.1
    • /
    • pp.167-178
    • /
    • 2010
  • The orthogonality is an important property in the experimental designs. We usually use supersaturated designs in case of large factors and small runs. These supersaturated designs do not satisfy the orthogonality. Hence, we need the means for the evaluation of the degree of the orthogonality of given supersaturated designs. We usually use the numerical measures as the means for evaluating the degree of the orthogonality of given supersaturated designs. We can use the graphical methods for evaluating the degree of the orthogonality of given supersaturated designs.

Mutual Information as a Criterion for Evaluating the Degree of the Orthogonality of Nearly Orthogonal Arrays (근사직교배열의 직교성을 평가하기 위한 측도로서의 상호정보)

  • Jang, Dae-Heung
    • Journal of Korean Society for Quality Management
    • /
    • v.36 no.3
    • /
    • pp.13-21
    • /
    • 2008
  • The orthogonality is an important property in the experimental designs. When we use nearly orthogonal arrays(for example, supersaturated designs), we need evaluate the degree of the orthogonality of given nearly orthogonal arrays. We can use the mutual information as a new criterion for evaluating and testing the degree of the orthogonality of given nearly orthogonal arrays.

Orthogonality Measurement of Square Plane Mirrors for Laser Interferometry (레이저 간섭계의 직각 평면거울에 대한 직각도 오차 측정)

  • 김태호;김승우
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.12
    • /
    • pp.169-179
    • /
    • 1998
  • Plane mirror type laser interferometers are popularly being used in many modern ultraprecision machines, as they can perform simultaneous measurements of multiple axis positions with nanometer resolution capabilities. One important issue in this application of laser interferometers is to provide a good level of alignment between the reflecting mirrors and the laser beams so that measurement errors due to undesirable coupling effects can be avoided in multiple axis measurements In this investigation, a thorough metrological analysis is given to develop an suitable mathematical model for a precision x-y stage in which the orthogonality misalignment between the reflecting mirrors significantly affects overall x-y mea-surement results. Then a noble calibration method is suggested in which two-dimensional displacement sensors of moire gratings of concentric circles are used to realize the reversal principle of orthogonality evaluation in situ. Finally, actual experimental results are discussed to verify that the suggested method can effectively calibrate the orthogonality error with an uncertainty of 0.2667 arcsec.

  • PDF

COMBINATORIAL INTERPRETATIONS OF THE ORTHOGONALITY RELATIONS FOR SPIN CHARACTERS OF $\tilde{S}n$

  • Lee, Jaejin
    • Korean Journal of Mathematics
    • /
    • v.22 no.2
    • /
    • pp.325-337
    • /
    • 2014
  • In 1911 Schur[6] derived degree and character formulas for projective representations of the symmetric groups remarkably similar to the corresponding formulas for ordinary representations. Morris[3] derived a recurrence for evaluation of spin characters and Stembridge[8] gave a combinatorial reformulation for Morris' recurrence. In this paper we give combinatorial interpretations for the orthogonality relations of spin characters based on Stembridge's combinatorial reformulation for Morris' rule.

Measurements of Two-dimensional Gratings Using a Metrological Atomic Force Microscope and Uncertainty Evaluation (길이 표준 소급성을 갖는 원자간력 현미경을 이용한 2차원 격자 시편 측정과 불확도 평가)

  • Kim, Jong-Ahn;Kim, Jae-Wan;Kang, Chu-Shik;Eom, Tae-Bong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.9
    • /
    • pp.68-75
    • /
    • 2007
  • The pitch and orthogonality of two-dimensional (2D) gratings have been measured by using a metrological atomic force microscope (MAFM) and measurement uncertainty has been analyzed. Gratings are typical standard artifacts for the calibration of precision microscopes. Since the magnification and orthogonality in two perpendicular axes of microscopes can be calibrated simultaneously using 2D gratings, it is important to certify the pitch and orthogonality of 2D gratings accurately for nano-metrology using precision microscopes. In the measurement of 2D gratings, the MAFM can be used effectively for its nanometric resolution and uncertainty, but a new measurement scheme was required to overcome some limitations of current MAFM such as nonnegligible thermal drift and slow scan speed. Two kinds of 2D gratings, each with the nominal pitch of 300 nm and 1000 nm, were measured using line scans for the pitch measurement of each direction. The expanded uncertainties (k = 2) of measured pitch values were less than 0.2 nm and 0.4 nm for each specimen, and those of measured orthogonality were less than 0.09 degree and 0.05 degree respectively. The experimental results measured using the MAFM and optical diffractometer were coincident with each other within the expanded uncertainty of the MAFM. As a future work, we also proposed another scheme for the measurements of 2D gratings to increase the accuracy of calculated peak positions.

Measurements of Two-dimensional Gratings Using a Metrological Atomic Force Microscope with Uncertainty Evaluation

  • Kim, Jong-Ahn;Kim, Jae-Wan;Kang, Chu-Shik;Eom, Tae-Bong
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.9 no.2
    • /
    • pp.18-22
    • /
    • 2008
  • The pitch and orthogonality of two-dimensional (2-D) gratings were measured using a metrological atomic force microscope (MAFM), and the measurement uncertainty was analyzed. Gratings are typical standard devices for the calibration of precision microscopes, Since the magnification and orthogonality in two perpendicular axes of microscopes can be calibrated simultaneously using 2-D gratings, it is important to certify the pitch and orthogonality of such gratings accurately for nanometrology. In the measurement of 2-D gratings, the MAFM can be used effectively for its nanometric resolution and uncertainty, but a new measurement scheme is required to overcome limitations such as thermal drift and slow scan speed. Two types of 2-D gratings with nominal pitches of 300 and 1000 nm were measured using line scans to determine the pitch measurement in each direction. The expanded uncertainties (k = 2) of the measured pitch values were less than 0.2 and 0.4 nm for each specimen, and the measured orthogonality values were less than $0.09^{\circ}$ and $0.05^{\circ}$, respectively. The experimental results measured using the MAFM and optical diffractometer agreed closely within the expanded uncertainty of the MAFM. We also propose an additional scheme for measuring 2-D gratings to increase the accuracy of calculated peak positions, which will be the subject of future study.

Evaluation of the Degree of the Orthogonality of 2-level Resolution-V Designs Constructed by Balanced Arrays (균형배열에 의해 설계되는 2-수준 Resolution-V 실험법의 직교성 평가측도)

  • Kim, Sang-Ik
    • Communications for Statistical Applications and Methods
    • /
    • v.15 no.2
    • /
    • pp.235-244
    • /
    • 2008
  • Balanced arrays which are generalized orthogonal arrays, introduced by Chakravarti (1956) can be used to construct the fractional factorial designs. Especially for 2-level factorials, balanced arrays with strength 4 are identical to the resolution-V fractional designs. In this paper criteria for evaluation the degree of the orthogonality of balanced arrays of 2-levels with strength 4 are developed and some application methods of the suggested criteria are discussed. As a result, in this paper, we introduce the constructing methods of near orthogonal saturated balanced resolution-V fractional 2-level factorial designs.

Graphical Methods for Evaluating Supersaturated Designs (초포화계획을 평가하기 위한 그래픽방법)

  • Jang, Dae-Heung
    • Proceedings of the Korean Society for Quality Management Conference
    • /
    • 2009.10a
    • /
    • pp.23-29
    • /
    • 2009
  • 직교성은 실험계획에서 중요한 개념이다. 실험계획에서 실험점의 개수보다 인자의 개수가 많은 상황에서 우리는 초포화계획을 사용한다. 이러한 초포화계획은 직교성을 만족하지 못하게 되는 데 얼마나 직교성을 만족하는 지를 평가하는 데 우리는 주로 수치적인 측도들을 사용한다. 우리는 초포화계획의 직교성의 정도를 평가하는 또 다른 탐색적 방법으로서 그래픽방법을 사용할 수 있다. 또한 초포화계획의 예측 능력을 평가하는 방법으로서 우리는 그래픽 방법을 사용할 수 있다.

  • PDF