References
- 장대흥 (2004). 근사직교배열의 직교성의 정도를 평가하기 위한 그래픽방법, <품질경영학회지>, 32, 220-228.
- Balkin, S. D. and Lin, D. K. J. (1998). A graphical comparison of supersaturated designs, Communications in Statistics-Theory and Methods, 27, 1289-1303. https://doi.org/10.1080/03610929808832159
- Booth, K. H. V. and Cox, D. R. (1962). Some systematic supersaturated designs, Technometrics, 4, 489-495. https://doi.org/10.2307/1266285
- Bruno, M. C., Dobrijevic, M., Luu, P. T. and Sergent, M. (2009). A new class of supersaturated designs: Application to a sensitivity study of a photochemical model, Chemometrics and Intelligent Laboratory Systems, 95, 86-93. https://doi.org/10.1016/j.chemolab.2008.09.001
-
Butler, N. A. (2009). Two-level supersaturated designs for
$2^k$ runs and other cases, Journal of Statistical Planning and Inference, 139, 23-29. https://doi.org/10.1016/j.jspi.2008.05.013 - Cela, R., Martinez, E. and Carro, A. M. (2000). Supersaturated experimental designs: New approaches to building and using it, Part I. Building optimal supersaturated designs by means of evolutionary algorithms, Chemometrics and Intelligent Laboratory Systems, 52, 167-182. https://doi.org/10.1016/S0169-7439(00)00091-5
- Cela, R., Martinez, E. and Carro, A. M. (2001). Supersaturated experimental designs: New approaches to building and using it, Part II. Solving supersaturated designs by genetic algorithms, Chemometrics and Intelligent Laboratory Systems, 57, 75-92. https://doi.org/10.1016/S0169-7439(01)00127-7
- Jang, D. H. (2002). Measures for evaluating non-orthogonality of experimental designs, Communications in Statistics-Theory and Methods, 31, 249-260. https://doi.org/10.1081/STA-120002649
- Jones, B. A., Nachtsheim, C. J. and Ye, K. Q. (2009). Model-robust supersaturated and partially supersaturated designs, Journal of Statistical Planning and Inference, 139, 45-53. https://doi.org/10.1016/j.jspi.2008.05.015
-
Koukouvinos, C. and Mylona, K. (2009). Group screening method for the statistical analysis of
$E(f_{NOD})-optimal$ mixed-level supersaturated designs, Statistical Methodology, 6, 380-388. https://doi.org/10.1016/j.stamet.2008.12.002 -
Koukouvinos, C., Mylona, K. and Simos, D. E. (2009). A hybrid SAGA algorithm for the construction of
$E(s^2)-optimal$ cyclic supersaturated designs, Statistical Methodology, 6, 380-388. https://doi.org/10.1016/j.stamet.2008.12.002 - Li, W. W. and Wu, C. F. J. (1997). Columnwise-pairwise algorithms with applications to the construction of supersaturated designs, Technometrics, 39, 171-179. https://doi.org/10.2307/1270905
- Lin, D. K. J. (1995). Generating systematic supersaturated designs, Technometrics, 37, 213-225. https://doi.org/10.2307/1269622
- Liu, M. Q. and Zhang L. (2009). An algorithm for constructing mixed-level k-circulant supersaturated designs, Computational Statistics and Data Analysis, 53, 2465-2470. https://doi.org/10.1016/j.csda.2008.12.009
- Phoa, F. K. H., Pan, Y. H. and Xu, H. (2009). Analysis of supersaturated designs via Danzig selector, Journal of Statistical Planning and Inference, 139, 2362-2372. https://doi.org/10.1016/j.jspi.2008.10.023
- Rais, F., Kamoun, A., Chaabouni, M., Bruno, C., Luu, P. T. and Sergent, M. (2009). Supersaturated design for screening factors influencing the preparation of sulfated amides of olive pomace oil fatty acids, Chemometrics and Intelligent Laboratory Systems, 99, 71-78. https://doi.org/10.1016/j.chemolab.2009.07.015
- Sarkar, A., Lin, D. K. J. and Chatterjee, K. (2009). Probability of correct model identification in supersaturated designs, Statistics and Probability Letters, 79, 1224-1230. https://doi.org/10.1016/j.spl.2009.01.017
- Wu, C. F. J. (1993). Construction of supersaturated designs through partially aliased interactions, Biometrika, 80, 661-669. https://doi.org/10.1093/biomet/80.3.661
Cited by
- Visualization for Experimental Designs vol.24, pp.5, 2011, https://doi.org/10.5351/KJAS.2011.24.5.893