• Title/Summary/Keyword: Evaluation of image quality

Search Result 955, Processing Time 0.034 seconds

Lens Dose Reduction Methods and Image Quality in Orbital Computed Tomography Scan (안와 전산화단층촬영검사 시 수정체 선량감소 방법과 영상 평가)

  • Moon, Se-Young;Hong, Sang-Woo;Seo, Ji-Sook;Kim, Yeong-Beom;Kwak, Wan-Sin;Lee, Seong-Yeong;Kim, Jung-Soo
    • Journal of radiological science and technology
    • /
    • v.43 no.5
    • /
    • pp.343-351
    • /
    • 2020
  • This study analyzed dose reduction and quality of images through dose reduction tools and shielding board to protect sensitive eye lens in radiation during orbit CT examinations for clinical data use. During CT scans of the phantom, surface dose (CT scanner dosimetry phantom, ion chamber-3 times) and quality of image (radiosurgery head phantom, visual assessment-2 times, HU standard deviation) were evaluated using X-care which is dose reduction tools and bismuth shielding board. The results of experiments of eight conditions showed a relatively reduced dose in all other conditions compared to when no conditions were set. In particular, the area corresponding to the ophthalmic part reduced the surface dose by up to 45.7 %. The visual evaluation of images by specialists and the quality evaluation of images analyzed by HU standard deviation were clinically closest to the use of X-care and shielding board (1 cm in height). Therefore, it is believed that the use of shielding board in a suitable location with dose reduction tools while investigating the optimal radiation dose will reduce the exposure dose of sensitive lens at radiation while maintaining the quality of the images with high diagnostic value.

Entrance Skin Dose and Image Quality Evaluation According to Use Grid Radiography for the Extremity in FPD System (FPD System에서 상.하지 촬영 시 격자에 따른 환자 선량 및 화질 평가)

  • Lee, In-Ja;Yeo, Young-Bok;Lee, Tae-Sung
    • Journal of radiological science and technology
    • /
    • v.33 no.4
    • /
    • pp.341-348
    • /
    • 2010
  • By accessing the current status of FPD system use in the hospitals located in Seoul and Gyeonggi Province as well as the entrance skin dose and the image quality evaluation realized by C-D Phantom, and the image assessment by the medical professionals regarding the radiography for the extremity, the following results were derived. 1. According to the evaluation made in the actual use of FPD system (12 machines), the grid ratio varied from 8:1 to 13:1, and 6 machines used the grid ratio with 12:1, realizing the largest number. Among the machines, there were 8 machines that allowed a removable grid while 3 machines did use a removable grid (25.0%). 2. When it came to the equipments used for the experiment, it showed that the amount of the entrance skin dose increased from 4.13 times up to 4.79 times with the grid use. 3. The difference in the entrance skin dose depending on the changes in the exposure condition(0.5times or 2.0times) was not significantly different regardless of the patients' thickness. 4. In terms of the image quality depending on C-D Phantom, the grid use was distinguished well. However, the images were well distinguishable as the exposure condition got increased. 5. In the clinical assessment, the grid use was less effective for the Hand PA, which was considered to shoot a thin body part. It was evaluated that the grid use was preferred for the Knee AP, which was shooting for a relatively thick body part. Nonetheless, 3 out of 5 people said that they would not use the grid if the entrance skin dose to reduced.

Evaluation of the effective dose and image quality of low-dose multi-detector CT for orthodontic treatment planning (3차원 안모분석을 위한 저선량 Multi-detector CT 영상의 유효선량 및 화질 평가)

  • Chung, Gi-Chung;Han, Won-Jeong;Kim, Eun-Kyung
    • Imaging Science in Dentistry
    • /
    • v.40 no.1
    • /
    • pp.15-23
    • /
    • 2010
  • Purpose : This study was designed to compare the effective doses from low-dose and standard-dose multi-detector CT (MDCT) scanning protocols and evaluate the image quality and the spatial resolution of the low-dose MDCT protocols for clinical use. Materials and Methods : 6-channel MDCT scanner (Siemens Medical System, Forschheim, Germany), was used for this study. Protocol of the standard-dose MDCT for the orthodontic analysis was 130 kV, 35 mAs, 1.25 mm slice width, 0.8 pitch. Those of the low-dose MDCT for orthodontic analysis and orthodontic surgery were 110 kV, 30 mAs, 1.25 mm slice width, 0.85 pitch and 110 kV, 45 mAs, 2.5 mm slice width, 0.85 pitch. Thermoluminescent dosimeters (TLDs) were placed at 31 sites throughout the levels of adult female ART head and neck phantom. Effective doses were calculated according to ICRP 1990 and 2007 recommendations. A formalin-fixed cadaver and AAPM CT performance phantom were scanned for the evaluation of subjective image quality and spatial resolution. Results : Effective doses in ${\mu}Sv$ ($E_{2007}$) were 699.1, 429.4 and 603.1 for standard-dose CT of orthodontic treatment, low-dose CT of orthodontic analysis, and low-dose CT of orthodontic surgery, respectively. The image quality from the low-dose protocol were not worse than those from the standard-dose protocol. The spatial resolutions of both standard-dose and low-dose CT images were acceptable. Conclusion : From the above results, it can be concluded that the low-dose MDCT protocol is preferable in obtaining CT images for orthodontic analysis and orthodontic surgery.

A Analysis of Effectiveness of Aluminium Filter in the added Compound Filtration by Detective Quantum Efficiency and Image Quality Evaluation (복합부가여과에서 알루미늄 여과판 사용 시 양자검출효율과 화질평가를 통한 효율성 분석)

  • Kim, Sang-Hyeon;Kim, Yun-Min;Kwon, Kyoung-Tae;Ma, Sang-Chull;Han, Dong-Gyoon
    • The Journal of the Korea Contents Association
    • /
    • v.15 no.10
    • /
    • pp.362-373
    • /
    • 2015
  • This study analysed the effectiveness of aluminium(Al) filter in the added compound filtration for the removal of characteristic radiation from high atomic number material by DQE and image evaluation. 1mm Al was applied to each 0.1, 0.2, 0.3 mm copper and befere and after use were evaluated. Beam quality and DQE were tested by IEC regulations and image quality was evaluated by PSNR, MAE, MSE, CNR, SNR and qualitative analysis was performed by 7 items for resolution and contrast from chest x-ray criteria of national cancer checkup. MTF 10 and 50% were the same by 4.6, 2.54 cycle/mm and NPS, DQE, PSNR MAE, MSE, CNR, SNR and qualitative analysis were all the same or slightly better when Al was not used. PSNR is over 30dB and all significant and at the qualitative analysis, the p-value of t-test was over 0.05. The DQE and image quality evaluation have little difference between before and after use of Al filter and it is effective to use the Al filter for the reduction of skin dose by removal of characteristic radiation.

Development of a Method for Measuring Image Quality of Intra Vascular Ultrasound Images using Image Analysis Program (영상 분석 프로그램을 이용한 혈관 내 초음파 영상의 화질 측정 방법 고안)

  • Seo, Young-Hyun;Han, Jae-Bok;Song, Jong-Nam
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.5
    • /
    • pp.621-628
    • /
    • 2021
  • Prior studies on frequency-related image quality analysis of intravascular ultrasound catheters are lacking both in Korea and abroad. Therefore, this study was conducted to prepare a standard for measuring the image quality using the program and to suggest a measuring method to researchers related to the quality analysis of intravascular ultrasound images. For the target, the vessel lumen size is 3.0 - 4.0 mm. Before using intravascular ultrasound, thoroughly clean the ultrasound catheter so that no air or foreign substances enter it. Normal vascular images and lesion vascular images of sufficiently dilated images were used. As a standard image acquisition method, the image of the end-systolic section, which has the best evaluation of vascular lesions when using intravascular ultrasound, was acquired retrospectively through the DCAS PACS program to set the standard. When setting the measurement method criteria, we proposed a standard setting method that corresponds to the concentric and eccentric circles of normal and lesion vessels. By applying this criterion, we proposed a method for measuring the lumen and lateral cavities of normal and lesion vessels of interest and background area. In conclusion, if the image quality of intravascular ultrasonography is measured through the method devised by these researchers, consistent quality measurement is possible regardless of the type of intravascular ultrasound catheter. Therefore, it is thought that it can be applied as a guideline for the actual image quality measurement method in the study related to intravascular ultrasound image quality.

The Evaluation of Eye Dose and Image Quality According to The New Tube Current Modulation and Shielding Techniques in Brain CT (두부 CT에서 차폐기법과 새로운 관전류변조기법에 따른 눈의 선량과 화질평가)

  • Kwon, Soonmu;Kim, Jungsu
    • Journal of the Korean Society of Radiology
    • /
    • v.9 no.5
    • /
    • pp.279-285
    • /
    • 2015
  • The eye of human is a radiation sensitive organ and this organ should be shielded from radiation exposure during brain CT procedures. In the brain CT procedures, bismuth protector using to reduce the radiation exposure dose for eye. But protecting the bismuth always accompanies problem of the image quality reduction including artifact. This study aim is the eye radiation exposure dose and image quality evaluation of the new tube current modulation such as new organ based-tube current modulation, longitudinal-TCM, angular-TCM between shielding scan technique using bismuth and lead glasses. As a result, radiation dose of eye is reduced 25.88% in new OB TCM technique then reference scan technique and SNR new OB TCM is 6.05 higher than bismuth shielding scan technique and lower than reference scan technique. In clinical brain CT, new OB TCM technique will contribute to reduction of radiation dose for eye without decrease of image quality.

Image Quality Evaluation according to the Application of Air Mattress on Computed Tomography Equipment Table (전산화단층촬영장비 테이블의 에어 매트리스 적용에 따른 화질평가)

  • Jeon, Sang-Won;Pak, Jae-Yun;Suh, Tae-Suk
    • Journal of the Korean Society of Radiology
    • /
    • v.14 no.6
    • /
    • pp.819-825
    • /
    • 2020
  • The purpose of this study was to evaluate the usefulness of the developed air mattress for reducing the deterioration of image quality due to the scattered radiation generated on the computed tomography equipment table. 5 cm and 10 cm thick air mattresses were developed and the image quality was measured by scanning the AAPM phantom according to thickness and thickness. Statistical significance was confirmed by One Way Analysis of Variance(ANOVA) Compared with the AAPM phantom scanned in the standard method, the image with the air mattress did not show any difference, but when the air mattress was not applied, the CT number and uniformity were low and the noise was high, and the spatial resolution Respectively. The developed air mattress has no harmful effect on the diagnostic image, it is very effective in improving the image quality and can increase the CT image quality by simply applying Air Mattress to existing equipment without using the technology applied to the latest and high-cost equipment.

The Evaluation of Radiation Dose by Exposure Method in Digital Magnification Mammography (디지털 유방확대촬영술에서 노출방식에 따른 피폭선량 평가)

  • Kim, Mi-Young;Kim, Hwa-Sun
    • Journal of radiological science and technology
    • /
    • v.35 no.4
    • /
    • pp.293-298
    • /
    • 2012
  • In digital mammography, Exposure factor were automatically chosen using by measurement breast thickness and the density of mammary gland. It may cause a increase glandular dose. The purpose of this study was to investigate optimal image quality in digital magnification mammography to decrease radiation exposure of patient dose. Auto mode gives the best image quality however, AGD showed better image quality. Image quality of manual mode passed phantom test and SNR at 55% mAs of auto mode commonly used in the digital magnification mammography. Also it could reduce AGD. According to result, manual mode may reduce the unnecessary radiation exposure in digital magnification mammography.

Perceptual Color Difference based Image Quality Assessment Method and Evaluation System according to the Types of Distortion (인지적 색 차이 기반의 이미지 품질 평가 기법 및 왜곡 종류에 따른 평가 시스템 제안)

  • Lee, Jee-Yong;Kim, Young-Jin
    • Journal of KIISE
    • /
    • v.42 no.10
    • /
    • pp.1294-1302
    • /
    • 2015
  • A lot of image quality assessment metrics that can precisely reflect the human visual system (HVS) have previously been researched. The Structural SIMilarity (SSIM) index is a remarkable HVS-aware metric that utilizes structural information, since the HVS is sensitive to the overall structure of an image. However, SSIM fails to deal with color difference in terms of the HVS. In order to solve this problem, the Structural and Hue SIMilarity (SHSIM) index has been selected with the Hue, Saturation, Intensity (HSI) model as a color space, but it cannot reflect the HVS-aware color difference between two color images. In this paper, we propose a new image quality assessment method for a color image by using a CIE Lab color space. In addition, by using a support vector machine (SVM) classifier, we also propose an optimization system for applying optimal metric according to the types of distortion. To evaluate the proposed index, a LIVE database, which is the most well-known in the area of image quality assessment, is employed and four criteria are used. Experimental results show that the proposed index is more consistent with the other methods.

Image quality assessment of pre-processed and post-processed digital panoramic radiographs in paediatric patients with mixed dentition

  • Suryani, Isti Rahayu;Villegas, Natalia Salvo;Shujaat, Sohaib;De Grauwe, Annelore;Azhari, Azhari;Sitam, Suhardjo;Jacobs, Reinhilde
    • Imaging Science in Dentistry
    • /
    • v.48 no.4
    • /
    • pp.261-268
    • /
    • 2018
  • Purpose: To determine the impact of an image processing technique on diagnostic accuracy of digital panoramic radiographs for the assessment of anatomical structures in paediatric patients with mixed dentition. Materials and Methods: The study consisted of 50 digital panoramic radiographs of children aged from 6 to 12 years, which were later on processed using a dedicated image processing method. A modified clinical image quality evaluation chart was used to evaluate the diagnostic accuracy of anatomical structures in maxillary and mandibular anterior and maxillary premolar region of processed images. Results: A statistically significant difference was observed between pre and post-processed evaluation of anatomical structures(P<0.05) in the maxillary and mandibular anterior region. The anterior region was found to be more accurate in post-processed images. No significant difference was observed in the maxillary premolar region (P>0.05). The Inter-observer and intra-observer reliability of both pre and post processed images were excellent (>0.82) for anterior region and good (>0.63) for premolar region. Conclusion: The application of image processing technique in digital panoramic radiography can be considered a reliable method for improving the quality of anatomical structures in paediatric patients with mixed dentition.