• 제목/요약/키워드: Evaluation of code design

검색결과 513건 처리시간 0.032초

Fatigue Evaluation on the Inside Surface of Reactor Coolant Pump Casing Weld

  • Kim, Seung-Tae;Park, Ki-Sung
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1998년도 춘계학술발표회논문집(2)
    • /
    • pp.795-801
    • /
    • 1998
  • Metallic fatigue of Pressurized Water Reactor(PWR) materials is a generic safety issue for commercial nuclear power plants. It is very important to obtain the fatigue usage factor for component integrity and life extension. In this paper, fatigue usage was obtained at the inside surface of Kori unit 2, 3 and 4 RCP casing weld, based on the design transient. And it was intended to establish the procedure and the detailed method of fatigue evaluation in accordance with ASME Section III Code. According to this code rule, two methods to determine the stress cycle and the number of cycles could be applied. One method is the superposition of cycles of various design transients and the other is based on the assumption that a stress cycle correspond to only one design transient. Both method showed almost same fatigue usage in the RCP casing weld.

  • PDF

Comparative assessment of ASCE 7-16 and KBC 2016 for determination of design wind loads for tall buildings

  • Alinejad, Hamidreza;Jeong, Seung Yong;Kang, Thomas H.K.
    • Wind and Structures
    • /
    • 제31권6호
    • /
    • pp.575-591
    • /
    • 2020
  • Wind load is typically considered as one of the governing design loads acting on a structure. Understanding its nature is essential in evaluation of its action on the structure. Many codes and standards are founded on state of the art knowledge and include step by step procedures to calculate wind loads for various types of structures. One of the most accepted means for calculating wind load is using Gust Load Factor or base bending Moment Gust Load Factor (MGLF), where codes are adjusted based on local data available. Although local data may differ, the general procedure is the same. In this paper, ASCE 7-16 (2017), which is used as the main reference in the U.S., and Korean Building Code (KBC 2016) are compared in evaluation of wind loads. The primary purpose of this paper is to provide insight on each code from a structural engineering perspective. Herein, discussion focuses on where the two codes are compatible and differ. In evaluating the action of wind loads on a building, knowledge of the dynamic properties of the structure is critical. For this study, the design of four figurative high-rise buildings with dual systems was analyzed.

강재댐퍼를 적용한 역사 건물의 내진 응답 (Seismic Resistance Response of Railway Station Building Retrofitted by Metallic Dampers)

  • 이현호
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제14권2호
    • /
    • pp.82-88
    • /
    • 2010
  • 본 연구의 목적은 내진규준이 적용되기 이전에 건설된 역사건물의 내진성능 평가 및 내진보강이다. 이를 위하여 2층 RC 역사건물의 내진성능이 평가되었다. 동적해석에 의한 층간변위비 및 층전단력 평가결과, 층전단력이 설계기준의 밑면전단력을 초과하는 것으로 평가되어 적절한 내진보강이 필요한 것으로 평가되었다. 내진성능 향상을 위하여 총 4개의 강재댐퍼가 사용되었다. 해석 변수는 강재댐퍼 형상 및 설치 방법이다. 동적해석결과 역 K가새로 설치되는 슬릿댐퍼가 다른 댐퍼 형상 및 설치 방법보다 우수한 내진성능을 가진 것으로 평가되었다.

시간의존성을 고려한 해안가 철도 콘크리트 구조물에 대한 내구성 설계 기법의 개발 (Development of Durability Design for Railroad Concrete Structures Exposed to Marine Environment Considering Time Dependency)

  • 송하원;백승우;이선호;권진수;이현정
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2007년도 춘계학술대회 논문집
    • /
    • pp.1431-1438
    • /
    • 2007
  • This paper presents a refined design model for current railroad design code on concrete structures exposed to marine environment. A time-varying diffusion coefficient(D) as well as surface chloride$(C_S)$ and chloride threshold level$(C_{lim})$ are studied. Averaging value of the D with time over exposed duration were used to refined durability design model to consider time dependent characteristic of D. The values for $C_S$ and $C_{lim}$ for the seashore in Korea revised for realistic durability design. The proposed model was verified by the so-called performance-based durability design, which is widely used in recent durability design code. Results show that the current standard specification underestimates durability performances of concrete structures exposed to marine environment, so that the cover depth design using current durability evaluation in the standard specifications is very much conservative. Thus, it is found that proposed durability design models for the railroad design code for railway concrete structures can be used effectively for service life design of concrete structures in marine environment.

  • PDF

ASSESSMENT OF A NEW DESIGN FOR A REACTOR CAVITY COOLING SYSTEM IN A VERY HIGH TEMPERATURE GAS-COOLED REACTOR

  • PARK GOON-CHERL;CHO YUN-JE;CHO HYOUNGKYU
    • Nuclear Engineering and Technology
    • /
    • 제38권1호
    • /
    • pp.45-60
    • /
    • 2006
  • Presently, the VHTGR (Very High Temperature Gas-cooled Reactor) is considered the most attractive candidate for a GEN-IV reactor to produce hydrogen, which will be a key resource for future energy production. A new concept for a reactor cavity cooling system (RCCS), a critical safety feature in the VHTGR, is proposed in the present study. The proposed RCCS consists of passive water pool and active air cooling systems. These are employed to overcome the poor cooling capability of the air-cooled RCCS and the complex cavity structures of the water-cooled RCCS. In order to estimate the licensibility of the proposed design, its performance and integrity were tested experimentally with a reduced-scale mock-up facility, as well as with a separate-effect test facility (SET) for the 1/4 water pool of the RCCS-SNU to examine the heat transfer and pressure drop and code capability. This paper presents the test results for SET and validation of MARS-GCR, a system code for the safety analysis of a HTGR. In addition, CFX5.7, a computational fluid dynamics code, was also used for the code-to-code benchmark of MARS-GCR. From the present experimental and numerical studies, the efficacy of MARS-GCR in application to determining the optimal design of complicated systems such as a RCCS and evaluation of their feasibility has been validated.

State of Practice of Performance-Based Seismic Design in Indonesia

  • Sukamta, Davy;Alexander, Nick
    • 국제초고층학회논문집
    • /
    • 제1권3호
    • /
    • pp.211-220
    • /
    • 2012
  • The current 2002 Indonesian Seismic Code consists of prescriptive criteria that are intended to result in buildings capable of providing certain levels of performance. However, the actual performance capability of buildings is not assessed as part of the code procedures. Several analysis procedures are allowed, and the state of practice is to use the RSA with six-zone seismic map developed for 475-year earthquake. This code is being revised and will adopt many of the ASCE7-10 provisions and 2475-year earthquake for MCE. The growth of tall buildings compels engineers to look for more optimal lateral system. The use of RC core wall as single system has been adopted by very few engineering firms, which is allowed in the current code but will no longer be the case if the new one is in effect. Other innovative structural system such as core wall and outrigger is not addressed in the proposed new code. Engineers must then resort to NLRHA. Currently, one 50-story building under construction using RC core wall and outrigger has been designed with RSA and employing capacity design principles, then evaluated using NLRHA per TBI Guidelines. Based on the evaluation, the performance of the 50-story building generally still meets the criteria of the TBI Guidelines. The result of the case study is presented in this paper.

석유화학 플랜트 배관계의 응력 및 진동 평가와 적용에 관한 연구 (A Study on Stress and Vibration Evaluations and Application of Piping System in Petrochemical Plant)

  • 민선규;최명진;장승호
    • 한국공작기계학회논문집
    • /
    • 제11권3호
    • /
    • pp.110-116
    • /
    • 2002
  • Here are shown on stress and vibration evaluations and application of piping system in petrochemical plant with and actual example. While stress evaluation by thermal growth has no argument on the calculated results, vibrational evaluations have some different results in accordance with the evaluation methods. In case of the static stress evaluation the ASME B3l.3 code defines 7000 cycles of fatigue lift: in operating the piping system with a design condition. However, the method of vibrational evaluation on piping systems in petrochemical plants has not been established clearly, yet. In this stuffy, it is purposed to present the requirement of a vibrational evaluation method for petrochemical plant piping system, with an actual application.

철근콘크리트 인장부재의 균열 산정식 평가 (Evaluation of Crack Estimation Equation for the Reinforced Concrete Tension Member)

  • 박찬욱;노삼영;신은미
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제13권3호통권55호
    • /
    • pp.197-208
    • /
    • 2009
  • 본 연구의 목적은 국내 콘크리트구조설계기준 부록에 새롭게 포함된 CEB-FIP Model Code 1990 균열 폭 산정식을 콘크리트 강도를 변수로 하여 평가하는 것에 있다, 평가 도구로 부착응력-미끌림 관계를 적용하여 구축한 균열요소모델과 기존 연구자들의 실험결과로부터 얻은 균열폭을 사용하였으며 기존 실험결과와 비교 평가함으로 검증하였다. 평가대상인 MC-90의 균열폭 산정식의 증요변수는 인장증강효과와 평균부착응력이며 이들을 균열요소모델 해석결과와 비교함으로 강도에 따라 개선된 인장증강효과와 평균부착응력을 제안하였다.

Optimization of ARIA Block-Cipher Algorithm for Embedded Systems with 16-bits Processors

  • Lee, Wan Yeon;Choi, Yun-Seok
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제8권1호
    • /
    • pp.42-52
    • /
    • 2016
  • In this paper, we propose the 16-bits optimization design of the ARIA block-cipher algorithm for embedded systems with 16-bits processors. The proposed design adopts 16-bits XOR operations and rotated shift operations as many as possible. Also, the proposed design extends 8-bits array variables into 16-bits array variables for faster chained matrix multiplication. In evaluation experiments, our design is compared to the previous 32-bits optimized design and 8-bits optimized design. Our 16-bits optimized design yields about 20% faster execution speed and about 28% smaller footprint than 32-bits optimized code. Also, our design yields about 91% faster execution speed with larger footprint than 8-bits optimized code.