• Title/Summary/Keyword: Evaluation of Settlement

Search Result 375, Processing Time 0.024 seconds

The Pre-Evaluation of Stability during Tunnel Excavation using Unconfined Compression Strength of Intact Rock or Rock Mass and Crown Settlement Data (터널천단변위와 암석 또는 암반의 일축압축강도를 이용한 시공 중인 터널의 예비 안정성 평가)

  • Park, Young Hwa;Moon, Hong Duk;Ha, Man Bok
    • International Journal of Highway Engineering
    • /
    • v.17 no.6
    • /
    • pp.27-32
    • /
    • 2015
  • PURPOSES : It is difficult to estimate tunnel stability because of lack of timely information during tunnel excavation. Tunnel deformability refers to the capacity of rock to strain under applied loads or unloads during tunnel excavation. This study was conducted to analyze a methods of pre-evaluation of stability during tunnel construction using the critical strain concept, which is applied to the results of tunnel settlement data and unconfined compression strength of intact rock or rock mass at the tunnel construction site. METHODS : Based on the critical strain concept, the pre-evaluation of stability of a tunnel was performed in the Daegu region, at a tunnel through andesite and granite rock. The critical strain concept is a method of predicting tunnel behavior from tunnel crown settlement data using the critical strain chart that is obtained from the relationship between strain and the unconfined compression strength of intact rock in a laboratory. RESULTS : In a pre-evaluation of stability of a tunnel, only actually measured crown settlement data is plotted on the lower position of the critical strain chart, to be compared with the total displacement of crown settlement, including precedent settlement and displacement data from before the settlement measurement. However, both cases show almost the same tunnel behavior. In an evaluation using rock mass instead of intact rock, the data for the rock mass strength is plotted on the lower portion of the critical strain chart, as a way to compare to the data for intact rock strength. CONCLUSIONS : From the results of the pre-evaluation of stability of the tunnel using the critical strain chart, we reaffirmed that it is possible to promptly evaluate the stability of a tunnel under construction. Moreover, this research shows that a safety evaluation using the actual instrumented crown settlement data with the unconfined compression strength of intact rock, rather than with the unconfined compression strength of a rock mass in the tunnel working face, is more conservative.

The Practical Simplified Equation for Settlement Evaluation of Counter Facility in Soft Ground Centering on Rubble Mound (연약지반에 설치된 항만 외곽시설의 안전점검을 위한 침하 평가 간편식 제안 - 사석경사제 중심으로)

  • Kim, Yong-Hee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.6
    • /
    • pp.317-324
    • /
    • 2020
  • In this study, a simplified equation for settlement evaluation suitable for the special conditions of a counter facility is suggested. Recently, counter facilities, especially breakwaters, are constructed on soft ground in distant seas as new-port development projects. A counter facility that resists the external forces by self-weight settles easily when constructed on soft ground. Settlement in a counter facility and breakwater is not an important factor for maintenance than a land facility. On the other hand, the current settlement evaluation criteria are excessive for conducting a safety inspection. A settlement evaluation from a safety inspection followed by "Detailed Guidelines for a safety inspection on a counter facility" is used. A simplified equation was proposed to calculate the maximum settlement by applying the allowable residual settlement or settlement stability evaluation results. The suitability of the simplified equation was assessed compared to the assessed rating from the settlement survey results. The proposed simplified equation showed that the settlement evaluation rating had been upgraded. The proposed simplified equation is expected to be used to evaluate the practical structural stability and functional performance.

Evaluation of Foundation Settlement of Gyungbu High Speed Concrete Track Under Construction (건설 중인 경부고속철도 콘크리트궤도 기초침하 평가)

  • Kim, Dae-Sang;Yoo, Chung-Hyun;Kim, Hwan-Ki
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.365-370
    • /
    • 2007
  • Foundation settlements(settlements at the embankment surface and ground) has been evaluating to satisfy the strict allowable residual settlement level from the start of the construction of Gyungbu high speed railway. This is because both embankment and ground settlement could be important to minimize the residual settlement after the construction of concrete track. Ground settlement is caused by the increase of effective stress resulting from embankment. The causes of embankment settlement could be come from different sources, for example, the increase of effective stress, rainfall, creep behaviors. Based on the field measured data, this paper analysed the settlement of ground and embankment settlement. The biggest settlement at the embankment surface was 9.7mm during 246days at the STA 000k922.5. The calculated settlement of embankment itself was 8.6mm at the same places. These results conclude that the compressive settlement of embankment could not negligible.

  • PDF

Evaluation of Performance of the Railroad Roadbed Material by Model Fatigue lest (실내 모형반복실험에 의한 철도노반재료의 성능 평가)

  • 황선근;이성혁;이시한;최찬용
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.03b
    • /
    • pp.191-198
    • /
    • 2000
  • Dynamic fatigue test is carried out using soil model box for the evaluation of performance of three different roadbed materials. Bearing capacity, settlement and mud pumping phenomenon of each roadbed materials as well as penetration of model ballast into the roadbeds are investigated. It was found that settlement of slag and crushed stone roadbed is smaller than the soil roadbed during dynamic fatigue test with same initial conditions.

  • PDF

Analysis of pile group behaviour to adjacent tunnelling considering ground reinforcement conditions with assessment of stability of superstructures

  • Young-Jin Jeon;Cheol-Ju Lee
    • Geomechanics and Engineering
    • /
    • v.33 no.5
    • /
    • pp.463-475
    • /
    • 2023
  • Tunnel construction activity, conducted mainly in mountains and within urban centres, causes soil settlement, thus requiring the relevant management of slopes and structures as well as evaluations of risk and stability. Accordingly, in this study we performed a three-dimensional finite element analysis to examine the behaviour of piles and pile cap stability when a tunnel passes near the bottom of the foundation of a pile group connected by a pile cap. We examined the results via numerical analysis considering different conditions for reinforcement of the ground between the tunnel and the pile foundation. The numerical analysis assessed the angular distortion of the pile cap, pile settlement, axial force, shear stress, relative displacement, and volume loss due to tunnel excavation, and pile cap stability was evaluated based on Son and Cording's evaluation criterion for damage to adjacent structures. The pile located closest to the tunnel under the condition of no ground reinforcement exhibited pile head settlement approximately 70% greater than that of the pile located farthest from the tunnel under the condition of greatest ground reinforcement. Additionally, pile head settlement was greatest when the largest volume loss occurred, being approximately 18% greater than pile head settlement under the condition having the smallest volume loss. This paper closely examines the main factors influencing the behaviour of a pile group connected by a pile cap for three ground reinforcement conditions and presents an evaluation of pile cap stability.

Measuring the Effects of the Uniform Settlement Rate Requirement in the International Telephone Industry

  • LEE, SUIL
    • KDI Journal of Economic Policy
    • /
    • v.42 no.1
    • /
    • pp.57-95
    • /
    • 2020
  • As a case study of an ex-post evaluation of regulations, in this paper I evaluate the 'uniform settlement rate requirement', a regulation that was introduced in 1986 and that was applied to the international telephone market in the U.S. for more than 20 years. In a bilateral market between the U.S. and a foreign country, each U.S. firm and its foreign partner jointly provide international telephone service in both directions, compensating each other for terminating incoming calls to their respective countries. The per-minute compensation amount for providing the termination service, referred to as the settlement rate, is determined by a bargaining process involving the two firms. In principle, each U.S. firm could have a different settlement rate for the same foreign country. In 1986, however, the Federal Communications Commission introduced the Uniform Settlement Rate Requirement (USRR), which required all U.S. firms to pay the same settlement rate to a given foreign country. The USRR significantly affected the relative bargaining positions of the U.S. and foreign firms, thereby changing negotiated settlement rates. This paper identifies two main routes through which the settlement rates are changed by the implementation of the USRR: the Competition-Induced-Incentive Effect and the Most-Favored-Nation Effect. I then empirically evaluate the USRR by estimating a bargaining model and conducting counterfactual experiments aimed at measuring the size of the two effects of the USRR. The experiments show remarkably large impacts due to the USRR. Requiring a uniform settlement rate, for instance, results in an average 32.2 percent increase in the negotiated settlement rates and an overall 13.7 percent ($3.43 billion) decrease in the total surplus in the U.S. These results provide very strong evidence against the implementation of the USRR in the 1990s and early 2000s.

Study of the Long-Term Behavior Characteristics of Roadbed on Concrete Track of High-speed Railway (고속철도 콘크리트 궤도상 토공노반의 장기거동 특성 연구)

  • Choi, Chan-Yong;Jung, Jae-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.4
    • /
    • pp.8-16
    • /
    • 2018
  • This study examined the long-term behavior of a roadbed using high-speed railway concrete track and roadbed measurement data and evaluated the long-term performance of the track and roadbed. Recently, high-speed railway track type has been adopted as a concrete slab. On the other hand, the concrete track is vulnerable to roadbed settlement. In the case of gravel tracks, it is easy to restore the original state by maintenance even if the roadbed settles. On the other hand, in the case of the concrete track, if excessive settlement of the roadbed occurs, cracks are generated continuously on the slabs and sleepers, resulting in greatly reduced usability. For this reason, it is difficult to restore the original state only by partial maintenance. In this paper, a long-term performance evaluation was carried out on a concrete track during operation by monitoring the measurement data of sensors buried from the beginning of construction for approximately 3 years after the high-speed railway opened. Performance evaluation methods include a performance evaluation of track/roadbed when the train passes, long-term track and roadbed performance evaluation, analysis of the track/roadbed effect on long-term settlement and analysis of the factors influencing long-term settlement. The trail response of KTX-Sancheon was greatest in the track/roadbed performance evaluation by train. The results of the long-term track and roadbed performance evaluation were measured within the standard values. The track and roadbed performance impact assessment with long-term settlement was strongly related to TCL settlement. The influences of the water content and groundwater level were verified by analyzing the external factors of long-term settlement. Through such a method, the stability of a track/roadbed can be secured.

Image Analysis Method for the Performance Evaluation of Marine Antifouling Coatings (화상 분석을 통한 선박 방오도료의 성능 평가)

  • Park, Hyun;Chun, Ho Hwan;Lee, Inwon
    • Journal of the Korean Society of Visualization
    • /
    • v.11 no.2
    • /
    • pp.18-26
    • /
    • 2013
  • An accurate and reliable performance evaluation technique is indispensable for the development of marine antifouling coatings. The existing standard practice is however, based on the visual observation of biofouling settlement area, which is prone to the subjective judgment of the inspector. In spite of the above mentioned importance, a systematic and objective fouling evaluation technique has not yet been introduced. In this study, a novel quantitative antifouling performance evaluation method for marine antifouling paints is devised based on the image analysis of panel immersion test results. The present image analysis method is to quantify settlement area for each fouling category by distinctive color. The fouling categories are set as unfouled, biofilm, green algae, brown algae, calcareous animal and spongy animal with specific HSL (Hue, Saturation, Lightness) color ranges. In order to assess the effectiveness of the proposed method, static immersion tests for three antifouling coatings were undertaken for two years.

Evaluation of Decomposition Effect in Long-term Settlement Prediction of Fresh Refuse Landfill (신선한 쓰레기 매립지의 장기 침하 예측에 대한 분해효과 평가)

  • 박현일;이승래
    • Geotechnical Engineering
    • /
    • v.14 no.6
    • /
    • pp.127-138
    • /
    • 1998
  • In refuse landfills, a considerable amount of settlement occurs due to the decomposition of refuse over several years. In this paper, several prediction methods are applied to the measured settlement data of fresh refuse sites. The effect of biological decomposition on the settlement characteristics is investigated in predicting the long-term settlement of refuse landfill sites in view of the predicted settlement curves and the amount of long-term settlement. Irrespective of the applied models, the long term settlement may not be correctly estimated if the model parameters do not contain the decomposition effects. Among the proposed several prediction methods, Gibson & Lo model and hyperbolic model seem to represent the long-term settlement characteristics, but the power creep law seems to considerably overestimate the long-term settlement.

  • PDF

Numerical evaluation of surface settlement induced by ground loss from the face and annular gap of EPB shield tunneling

  • An, Jun-Beom;Kang, Seok-Jun;Kim, Jin;Cho, Gye-Chun
    • Geomechanics and Engineering
    • /
    • v.29 no.3
    • /
    • pp.291-300
    • /
    • 2022
  • Tunnel boring machines combined with the earth pressure balanced shield method (EPB shield TBMs) have been adopted in urban areas as they allow excavation of tunnels with limited ground deformation through continuous and repetitive excavation and support. Nevertheless, the expansion of TBM construction requires much more minor and exquisitely controlled surface settlement to prevent economic loss. Several parametric studies controlling the tunnel's geometry, ground properties, and TBM operational factors assuming ordinary conditions for EPB shield TBM excavation have been conducted, but the impact of excessive excavation on the induced settlement has not been adequately studied. This study conducted a numerical evaluation of surface settlement induced by the ground loss from face imbalance, excessive excavation, and tail void grouting. The numerical model was constructed using FLAC3D and validated by comparing its result with the field data from literature. Then, parametric studies were conducted by controlling the ground stiffness, face pressure, tail void grouting pressure, and additional volume of muck discharge. As a result, the contribution of these operational factors to the surface settlement appeared differently depending on the ground stiffness. Except for the ground stiffness as the dominant factor, the order of variation of surface settlement was investigated, and the volume of additional muck discharge was found to be the largest, followed by the face pressure and tail void grouting pressure. The results from this study are expected to contribute to the development of settlement prediction models and understanding the surface settlement behavior induced by TBM excavation.