• Title/Summary/Keyword: Evaluation model of disaster risk

Search Result 37, Processing Time 0.028 seconds

Application of GIS to Typhoon Risk Assessment (지리정보시스템을 이용한 태풍 위험 평가)

  • Lee, Sung-Su;Chang, Eun-Mi
    • Spatial Information Research
    • /
    • v.17 no.2
    • /
    • pp.243-249
    • /
    • 2009
  • Damages from typhoon events have contributed more than 60 percent of total economic and social loss and the size of loss have been increased up to 800 million dollars per year in Korea, It is therefore necessary to make an effort to mitigate the loss of natural disasters. To facilitate the evaluation of damages in advance and to support the decision making to recover the damages, scientific methods have been adopted. With the effort, GIS data can provide various tools. Three components of hazard mapping are estimation of hazard, inventory for vulnerable features, and fragility of each feature. Vulnerability of natural disaster can be obtained by relation between loss and meteorological data such as precipitation and wind speed. Features can be categorized from other GIS data of public facilities and private properties, and then social and economic loss can be estimated. At this point, GIS data conversions for each model are required. In this study, we build a method to estimate typhoon risk based on GIS data such as DEM, land cover and land use map, facilities.

  • PDF

A Study of Life Safety Index Model based on AHP and Utilization of Service (AHP 기반의 생활안전지수 모델 및 서비스 활용방안 연구)

  • Oh, Hye-Su;Lee, Dong-Hoon;Jeong, Jong-Woon;Jang, Jae-Min;Yang, Sang-Woon
    • Journal of the Society of Disaster Information
    • /
    • v.17 no.4
    • /
    • pp.864-881
    • /
    • 2021
  • Purpose: This study aims is to provide a total care solution preventing disaster based on Big Data and AI technology and to service safety considered by individual situations and various risk characteristics. The purpose is to suggest a method that customized comprehensive index services to prevent and respond to safety accidents for calculating the living safety index that quantitatively represent individual safety levels in relation to daily life safety. Method: In this study, we use method of mixing AHP(Analysis Hierarchy Process) and Likert Scale that extracted from consensus formation model of the expert group. We organize evaluation items that can evaluate life safety prevention services into risk indicators, vulnerability indicators, and prevention indicators. And We made up AHP hierarchical structure according to the AHP decision methodology and proposed a method to calculate relative weights between evaluation criteria through pairwise comparison of each level item. In addition, in consideration of the expansion of life safety prevention services in the future, the Likert scale is used instead of the AHP pair comparison and the weights between individual services are calculated. Result: We obtain result that is weights for life safety prevention services and reflected them in the individual risk index calculated through the artificial intelligence prediction model of life safety prevention services, so the comprehensive index was calculated. Conclusion: In order to apply the implemented model, a test environment consisting of a life safety prevention service app and platform was built, and the efficacy of the function was evaluated based on the user scenario. Through this, the life safety index presented in this study was confirmed to support the golden time for diagnosis, response and prevention of safety risks by comprehensively indication the user's current safety level.

Based on ISO Requirements for Sustainability Management Establishment of Evaluation Model for Supplier _ Only for Semiconductor Processes (지속가능경영을 위한 ISO 요구사항 기반 정량적 협력업체 평가모델 구축 _반도체 공정에 한하여)

  • Yu, Je-Young;Lee, Ik-Mo;Hwang, Yong-Woo;Kim, Young-Woon
    • Journal of the Korea Safety Management & Science
    • /
    • v.21 no.2
    • /
    • pp.25-42
    • /
    • 2019
  • The government announced that it would ask the contractors not only the supplier but also the contractors to take the same responsibilities if they did not observe industrial accident safety measures from 2019. The semiconductor manufacturing process belongs to the representative disaster industry group in which the facility is directly located inside a closed space called clean room. According to previous studies, the semiconductor industry group used checklists for safety management of their suppliers. This study has developed a model for assessing suppliers by constructing a quantitative checklist item through the risk assessment methodology, laws and regulations. The evaluation model of the supplier set up through this study becomes the safety management standard in the semiconductor industry. Furthermore, it is applied to the partner companies in the operation of ISO 14001, 45001, I would like to apply it as a measure of performance management for CSR (Corporate Social Responsibility).

Intelligent optimal grey evolutionary algorithm for structural control and analysis

  • Z.Y. Chen;Yahui Meng;Ruei-Yuan Wang;Timothy Chen
    • Smart Structures and Systems
    • /
    • v.33 no.5
    • /
    • pp.365-374
    • /
    • 2024
  • This paper adopts a new approach in which nonlinear vibrations can be controlled using fuzzy controllers by optimal grey evolutionary algorithm. If the fuzzy controller cannot stabilize the systems, then the high frequency is injected into the system to assist the controller, and the system is asymptotically stabilized by adjusting the parameters. This paper uses the GM (grey model) and the neural network prediction model. The structure of the neural network is improved from a single factor, and multiple data inputs are extended to various factors and numerous data inputs. The improved model expands the applicable range of uncontrolled elements and improves the accuracy of controlled prediction, using the model that has been trained and stabilized by multiple learning. The simulation results show that the improved gray neural network model has higher prediction accuracy and reliability than the traditional GM model, improving controlled management and pre-control ability. In the combined prediction, the time series parameters and the predicted values obtained from the GM (1,1) (Grey Model of first order and one variable) are simultaneously used as the input terms of the neural network, considering the influence of the non-equal spacing of the data, which makes the results of the combined gray neural network model more rationalized. By adjusting the model structure and system parameters to simulate and analyze the controlled elements, the corresponding risk change trend graphs and prediction numerical calculation results are obtained, which also realize the effective prediction of controlled elements. According to the controlled warning principle and objective, the fuzzy evaluation method establishes the corresponding early warning response method. The goals of this paper are towards access to adequate, safe and affordable housing and basic services, promotion of inclusive and sustainable urbanization and participation, implementation of sustainable and disaster-resilient buildings, sustainable human settlement planning and manage.

Economic Evaluation of IT Investments for Emergency Management : A Cost-centric Control Model

  • Kim, Tae-Ha;Lee, Young-Jai
    • Journal of Information Technology Applications and Management
    • /
    • v.15 no.3
    • /
    • pp.195-208
    • /
    • 2008
  • In an emergency management case, evaluating the economic value of information technology investments is a challenging problem due to the effects of decision making, uncertainty of disasters, and difficulty of measurements. Risk assessment and recovery process, one of the major functions in emergency management, consists of (1) measurement of damages or losses, (2) recovery planning, (3) reporting and approving budgets, (4) auctioning off recovery projects to constructors, and (5) construction for the recovery. Specifically and of our interest, measurement of damages or losses is often a costly and time-consuming process because the wide range of field surveys should be performed by a limited pool of trained agents. Managers, therefore, have to balance accuracy of the field survey against the total time to complete the survey. Using information technologies to support field survey and reporting has great potential to reduce errors and lowers the cost of the process. However, existing cost benefit analysis framework may be problematic to evaluate and justify the IT investment because the cost benefit analysis often include the long-run benefit of IT that is difficult to quantify and overlook the impact of managerial control upon the investment outcomes. Therefore, we present an alternative cost-centric control model that conservatively quantifies all cost savings to replace benefits in cost benefit analysis and incorporate the managerial control. The model provides a framework to examine how managerial decision making and uncertainty of disaster affect the economic value of IT investments. The current project in Emergency Agency in South Korea is introduced as a case to apply the cost-centric control model. Our work helps managers to better evaluate and justify IT-related investment alternatives in emergency management.

  • PDF

Flow Assessment and Prediction in the Asa River Watershed using different Artificial Intelligence Techniques on Small Dataset

  • Kareem Kola Yusuff;Adigun Adebayo Ismail;Park Kidoo;Jung Younghun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.95-95
    • /
    • 2023
  • Common hydrological problems of developing countries include poor data management, insufficient measuring devices and ungauged watersheds, leading to small or unreliable data availability. This has greatly affected the adoption of artificial intelligence techniques for flood risk mitigation and damage control in several developing countries. While climate datasets have recorded resounding applications, but they exhibit more uncertainties than ground-based measurements. To encourage AI adoption in developing countries with small ground-based dataset, we propose data augmentation for regression tasks and compare performance evaluation of different AI models with and without data augmentation. More focus is placed on simple models that offer lesser computational cost and higher accuracy than deeper models that train longer and consume computer resources, which may be insufficient in developing countries. To implement this approach, we modelled and predicted streamflow data of the Asa River Watershed located in Ilorin, Kwara State Nigeria. Results revealed that adequate hyperparameter tuning and proper model selection improve streamflow prediction on small water dataset. This approach can be implemented in data-scarce regions to ensure timely flood intervention and early warning systems are adopted in developing countries.

  • PDF

Urban Inundation Modeling and Its Damage Evaluation Based on Loose-coupling GIS (Loose-coupling GIS기반의 도시홍수 모의 및 피해액산정)

  • Kang, Sang-Hyeok
    • Spatial Information Research
    • /
    • v.18 no.1
    • /
    • pp.49-56
    • /
    • 2010
  • Considering the flood problem in urban areas, it is important to estimate disaster risk using accurate numerical analysis for inundation. In this study, it is carried out to calculate inundation depth in Samcheok city which suffered from serious flood damage in 2002. The urban flood model was developed by cording Manning n, elevation, and building's rare on ArcGIS for reducing error on data exchange, and applied for estimating flood damage by grid. This paper describes the extraction of sewer lines and buildings area, estimates its influence on flood inundation extent, and integrated 1D/2D flow to simulate inundation depth in high-density building area. This paper shows an integrated urban flood modeling including rainfall-runoff, inundation simulation, and mathematical flood damage estimation, and will serve drainage design for reducing its damage.

Evaluation and Improvement of the KMAPP Surface Wind Speed Prediction over Complex Terrain Areas (복잡 지형 지역에서의 KMAPP 지상 풍속 예측 성능 평가와 개선)

  • Keum, Wang-Ho;Lee, Sang-Hyun;Lee, Doo-Il;Lee, Sang-Sam;Kim, Yeon-Hee
    • Atmosphere
    • /
    • v.31 no.1
    • /
    • pp.85-100
    • /
    • 2021
  • The necessity of accurate high-resolution meteorological forecasts becomes increasing in socio-economical applications and disaster risk management. The Korea Meteorological Administration Post-Processing (KMAPP) system has been operated to provide high-resolution meteorological forecasts of 100 m over the South Korea region. This study evaluates and improves the KMAPP performance in simulating wind speeds over complex terrain areas using the ICE-POP 2018 field campaign measurements. The mountainous measurements give a unique opportunity to evaluate the operational wind speed forecasts over the complex terrain area. The one-month wintertime forecasts revealed that the operational Local Data Assimilation and Prediction System (LDAPS) has systematic errors over the complex mountainous area, especially in deep valley areas, due to the orographic smoothing effect. The KMAPP reproduced the orographic height variation over the complex terrain area but failed to reduce the wind speed forecast errors of the LDAPS model. It even showed unreasonable values (~0.1 m s-1) for deep valley sites due to topographic overcorrection. The model's static parameters have been revised and applied to the KMAPP-Wind system, developed newly in this study, to represent the local topographic characteristics better over the region. Besides, sensitivity tests were conducted to investigate the effects of the model's physical correction methods. The KMAPP-Wind system showed better performance in predicting near-surface wind speed during the ICE-POP period than the original KMAPP version, reducing the forecast error by 21.2%. It suggests that a realistic representation of the topographic parameters is a prerequisite for the physical downscaling of near-ground wind speed over complex terrain areas.

A Study on Strengthening Consequence Management System Against CBRN Threats (CBRN 위협에 대비한 사후관리체계 강화방안)

  • Kwon, Hyuckshin;Kwak, Minsu;Kim, Kwanheon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.40 no.4
    • /
    • pp.429-435
    • /
    • 2020
  • North Korea declared itself complete with nuclear force after its sixth nuclear test in 2017. Despite efforts at home and abroad to denuclearize the Korean Peninsula, the prospects for the denuclearization are not bright. Along with political and diplomatic efforts to deter NK's WMD threats, the government is required to strengthen its consequence management capabilities against 'catastrophic situations' expected in case of emergency. Accordingly, this study was conducted to present measures to strengthen follow-up management against CBRN threats. The research model was partially supplemented and utilized by the THIRA process adopted and utilized by the U.S. Department of Homeland Security among national-level disaster management plan development models. Korea's consequence management (CM) system encompasses risk and crisis management on disaster condition. The system has been carried out in the form of a civil, government and military integrated defense operations for the purpose of curbing the spread or use of CBRNs, responding to threats, and minimizing expected damages. The preventive stage call for the incorporation of CBRN concept and CM procedures into the national management system, supplementing the integrated alarm systems, preparation of evacuation facilities, and establishment of the integrated training systems. In the preparation phase, readjustment of relevant laws and manuals, maintenance of government organizations, developing performance procedures, establishing the on-site support systems, and regular training are essential. In the response phase, normal operations of the medical support system for first aid and relief, installation and operation of facilities for decontamination, and development of regional damage assessment and control guidelines are important. In the recovery phase, development of stabilization evaluation criteria and procedures, securing and operation of resources needed for damage recovery, and strengthening of regional damage recovery capabilities linked to local defense forces, reserve forces and civil defense committees are required.

Analysis of Building Vulnerabilities to Typhoon Disaster Based on Damage Loss Data (태풍 재해에 대한 건물 취약성의 피해손실 데이터 기반 분석)

  • Ahn, Sung-Jin;Kim, Tae-Hui;Son, Ki-Young;Kim, Ji-Myong
    • Journal of the Korea Institute of Building Construction
    • /
    • v.19 no.6
    • /
    • pp.529-538
    • /
    • 2019
  • Typhoons can cause significant financial damage worldwide. For this reason, states, local governments and insurance companies attempt to quantify and mitigate the financial risks related to these natural disasters by developing a typhoon risk assessment model. As such, the importance of typhoon risk assessment models is increasing, and it is also important to reflect local vulnerabilities to enable sophisticated assessments. Although a practical study of economic losses associated with natural disasters has identified essential risk indicators, comprehensive studies covering the correlation between vulnerability and economic loss are still needed. The purpose of this study is to identify typhoon damage indicators and to develop evaluation indicators for typhoon damage prediction functions, utilizing the loses from Typhoon Maemi as data. This study analyzes actual loss records of Typhoon Maemi provided by local insurance companies to prepare for a scenario of maximum losses. To create a vulnerability function, the authors used the wind speed and distance from the coast and the total value of property, construction type, floors, and underground floor indicators. The results and metrics of this study provide practical guidelines for government agencies and insurance companies in developing vulnerability functions that reflect the actual financial losses and regional vulnerabilities of buildings.