• Title/Summary/Keyword: Evaluation Technique

Search Result 4,715, Processing Time 0.036 seconds

Deep learning-based Multilingual Sentimental Analysis using English Review Data (영어 리뷰데이터를 이용한 딥러닝 기반 다국어 감성분석)

  • Sung, Jae-Kyung;Kim, Yung Bok;Kim, Yong-Guk
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.3
    • /
    • pp.9-15
    • /
    • 2019
  • Large global online shopping malls, such as Amazon, offer services in English or in the language of a country when their products are sold. Since many customers purchase products based on the product reviews, the shopping malls actively utilize the sentimental analysis technique in judging preference of each product using the large amount of review data that the customer has written. And the result of such analysis can be used for the marketing to look the potential shoppers. However, it is difficult to apply this English-based semantic analysis system to different languages used around the world. In this study, more than 500,000 data from Amazon fine food reviews was used for training a deep learning based system. First, sentiment analysis evaluation experiments were carried out with three models of English test data. Secondly, the same data was translated into seven languages (Korean, Japanese, Chinese, Vietnamese, French, German and English) and then the similar experiments were done. The result suggests that although the accuracy of the sentimental analysis was 2.77% lower than the average of the seven countries (91.59%) compared to the English (94.35%), it is believed that the results of the experiment can be used for practical applications.

Analysis of the 2-dimensional marginal fit of the occlusal surface and the 3-dimensional accuracy of the inner surface of the occlusal surface according to the inlay prosthesis structure made of composite resin (복합레진으로 제작한 인레이 보철물 구조에 따른 교합면 부위의 2차원 변연 적합도 및 내면 부위의 3차원 정확성 분석)

  • Kim, Dong-Yeon;Lee, Tae-Hee;Park, Dong-In;Park, Jin-Young;Jeong, Il-Do;Lee, Ha-Na;Kim, Ji-Hwan;Kim, Woong-Chul
    • Journal of Technologic Dentistry
    • /
    • v.41 no.1
    • /
    • pp.21-27
    • /
    • 2019
  • Purpose: To evaluate 2D and 3D of occulsal, mesial-occlusal and mesial-occlusal-distal cavity of composite resin inlay. Methods: Abutment tooth 16, 36 of FDI system was selected for the study. Inlay prostheses classified as occlusal cavity (OC group), mesial-occlusal (MOC) and mesial-occlusal-distal cavity (MODC) were prepared using composite resin. Composite resin was injected with composite resin in prepared tooth cavity and then photopolymerized with UV light. Additional thermal polymerization was performed. Marginal gap of composite resin inlays were measured by digital microscope(x160) with silicone replica technique. The data was analyzed from statistical software for Kruskal-Wallis test (${\alpha}=0.05$). 3-dimensional analysis was analyzed through superimposition method. Results: The smallest 2D marginal fit measure of the three groups was $47.0{\pm}21.6{\mu}m$ in the MOC group. The largest 2D marginal was $69.1{\pm}33.8{\mu}m$ in the MODC group. In the trueness of the three groups, the most accurate figure was $14.4{\pm}2.3{\mu}m$ for the MODC group. In Precision, the most accurate figure was $14.5{\pm}4.3{\mu}m$ for the MODC group. Conclusion : In this study, 2D marginal fit of OC, MOC, and MODC cavities fabricated with composite resin was applicable to all clinical applications. In the 3D inner surface accuracy evaluation, the MODC group showed the accuracy results.

Comparison of Rooftop Surface Temperature and Indoor Temperature for the Evaluation of Cool Roof Performance according to the Rooftop Colors in Summer: Using Thermal Infrared Camera Mounted on UAV (옥상 색상에 따른 쿨루프 성능평가를 위한 여름철 옥상 표면 및 실내온도 비교 분석 : 무인항공기에 장착된 열적외선 카메라를 이용하여)

  • Lee, Ki Rim;Seong, Ji Hoon;Han, You Kyung;Lee, Won Hee
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.37 no.1
    • /
    • pp.9-18
    • /
    • 2019
  • The intensity and the number of days of high temperature occurrence are also high and record heat occurred. In addition, the global warming phenomenon is intensifying globally, and especially in South Korea, the urban heat island phenomenon is also occurring due to rapid urbanization due to rapid industrial development. As the temperature of the city rises, it causes problems such as the comfort of the residential living and the cooling load. In this study, the cool roof performance is evaluated according to the roof color to reduce these problems. Unlike previous studies, UAV(Unmanned Aerial Vehicle) thermal infrared camera was used to obtain the surface temperature (white, grey, green, blue, brown, black) according to the rooftop color by remote sensing technique. As a result, the surface temperature of white color was $11{\sim}20^{\circ}C$ lower than other colors. Also air conditioning temperature of white color was $1.5{\sim}4.4^{\circ}C$ lower than other colors and the digital thermometer of white color was about $1.5{\sim}3.5^{\circ}C$ lower than other colors. It was confirmed that the white cool roof performance is the best, and the UAV and the thermal infrared camera can confirm the cool roof performa.

Performance Comparison of Matching Cost Functions for High-Quality Sea-Ice Surface Model Generation (고품질 해빙표면모델 생성을 위한 정합비용함수의 성능 비교 분석)

  • Kim, Jae-In;Kim, Hyun-Cheol
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.6_2
    • /
    • pp.1251-1260
    • /
    • 2018
  • High-quality sea-ice surface models generated from aerial images can be used effectively as field data for developing satellite-based remote sensing methods but also as analysis data for understanding geometric variations of Arctic sea-ice. However, the lack of texture information on sea-ice surfaces can reduce the accuracy of image matching. In this paper, we analyze the performance of matching cost functions for homogeneous sea-ice surfaces as a part of high-quality sea-ice surface model generation. The matching cost functions include sum of squared differences (SSD), normalized cross-correlation (NCC), and zero-mean normalized cross-correlation (ZNCC) in image domain and phase correlation (PC), orientation correlation (OC), and gradient correlation (GC) in frequency domain. In order to analyze the matching performance for texture changes clearly and objectively, a new evaluation methodology based on the principle of object-space matching technique was introduced. Experimental results showed that it is possible to secure reliability and accuracy of image matching only when optimal search windows are variably applied to each matching point in textureless regions such as sea-ice surfaces. Among the matching cost functions, NCC and ZNCC showed the best performance for texture changes.

Evaluation of Recent Magma Activity of Sierra Negra Volcano, Galapagos Using SAR Remote Sensing (SAR 원격탐사를 활용한 Galapagos Sierra Negra 화산의 최근 마그마 활동 추정)

  • Song, Juyoung;Kim, Dukjin;Chung, Jungkyo;Kim, Youngcheol
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.6_4
    • /
    • pp.1555-1565
    • /
    • 2018
  • Detection of subtle ground deformation of volcanoes plays an important role in evaluating the risk and possibility of volcanic eruptions. Ground-fixed observation equipment is difficult to maintain and cost-inefficient. In contrast, satellite remote sensing can regularly monitor at low cost. In this paper, following the study of Chadwick et al. (2006), which applied the interferometric SAR (InSAR) technique to the Sierra Negra volcano, Galapagos. In order to investigate the deformation of the volcano before 2005 eruption, the recent activities of this volcano were analyzed using Sentinel-1, the latest SAR satellite. We obtained the descending mode Sentinel-1A SAR data from January 2017 to January 2018, applied the Persistent Scatter InSAR, and estimated the depth and expansion quantity of magma in recent years through the Mogi model. As a result, it was confirmed that the activity pattern of volcano prior to the eruption in June 2018 was similar to the pattern before the eruption in 2005 and was successful in estimating the depth and expansion amount. The results of this study suggest that satellite SAR can characterize the activity patterns of volcano and can be possibly used for early monitoring of volcanic eruption.

Performance Evaluation of Snow Detection Using Himawari-8 AHI Data (Himawari-8 AHI 적설 탐지의 성능 평가)

  • Jin, Donghyun;Lee, Kyeong-sang;Seo, Minji;Choi, Sungwon;Seong, Noh-hun;Lee, Eunkyung;Han, Hyeon-gyeong;Han, Kyung-soo
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.6_1
    • /
    • pp.1025-1032
    • /
    • 2018
  • Snow Cover is a form of precipitation that is defined by snow on the surface and is the single largest component of the cryosphere that plays an important role in maintaining the energy balance between the earth's surface and the atmosphere. It affects the regulation of the Earth's surface temperature. However, since snow cover is mainly distributed in area where human access is difficult, snow cover detection using satellites is actively performed, and snow cover detection in forest area is an important process as well as distinguishing between cloud and snow. In this study, we applied the Normalized Difference Snow Index (NDSI) and the Normalized Difference Vegetation Index (NDVI) to the geostationary satellites for the snow detection of forest area in existing polar orbit satellites. On the rest of the forest area, the snow cover detection using $R_{1.61{\mu}m}$ anomaly technique and NDSI was performed. As a result of the indirect validation using the snow cover data and the Visible Infrared Imaging Radiometer (VIIRS) snow cover data, the probability of detection (POD) was 99.95 % and the False Alarm Ratio (FAR) was 16.63 %. We also performed qualitative validation using the Himawari-8 Advanced Himawari Imager (AHI) RGB image. The result showed that the areas detected by the VIIRS Snow Cover miss pixel are mixed with the area detected by the research false pixel.

Borehole Elemental Concentration Logs: Theory, Current Trends and Next Level (암석구성성분검층: 원리, 연구동향 및 향후 과제)

  • Shin, Jehyun;Hwang, Seho
    • Geophysics and Geophysical Exploration
    • /
    • v.22 no.3
    • /
    • pp.149-159
    • /
    • 2019
  • Borehole elemental concentration logging, measuring neutron-induced gamma rays by inelastic scattering and neutron capture interactions between neutron and formation, delivers concentrations of the most common elements found in the minerals and fluids of subsurface formation. X-ray diffraction and X-ray fluorescence analysis from core samples are traditionally used to understand formation composition and mineralogy, but it represents only part of formations. Additionally, it is difficult to obtain elemental analysis over the whole intervals because of poor core recovery zones such as fractures or sand layers mainly responsible for groundwater flow. The development of borehole technique for in situ elemental analysis plays a key role in assessing subsurface environment. Although this technology has advanced consistently starting from conventional and unconventional resources evaluation, it has been considered as exclusive techniques of some major service company. As regards domestic research and development, it has still remained an unexplored field because of some barriers such as the deficiency of detailed information on tools and calibration facility for chemistry and mineralogy database. This article reviews the basic theory of spectroscopy measurements, system configuration, calibration facility, and current status. In addition, this article introduces the domestic researches and self-development status on borehole elemental concentration tools.

Evaluation of GPM satellite and S-band radar rain data for flood simulation using conditional merging method and KIMSTORM2 distributed model (조건부합성 기법과 KIMSTORM2 분포형 수문모형을 이용한 GPM 위성 강우자료 및 Radar 강우자료의 홍수모의 평가)

  • Kim, Se Hoon;Jung, Chung Gil;Jang, Won Jin;Kim, Seong Joon
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.1
    • /
    • pp.21-33
    • /
    • 2019
  • This study performed to simulate the watershed storm runoff using data of S-band dual-polarization radar rain, GPM (Global Precipitation Mission) satellite rain, and observed rainfall at 21 ground stations operated by KMA (Korea Meteorological Administration) respectively. For the 3 water level gauge stations (Sancheong, Changchon, and Namgang) of NamgangDam watershed ($2,293km^2$), the KIMSTORM2 (KIneMatic wave STOrm Runoff Model2) was applied and calibrated with parameters of initial soil moisture contents, Manning's roughness of overland and stream to the event of typhoon CHABA (82 mm in watershed aveprage) in $5^{th}$ October 2016. The radar and GPM data was corrected with CM (Conditional Merging) method such as CM-corrected Radar and CM-corrected GPM. The CM has been used for accurate rainfall estimation in water resources and meteorological field and the method combined measured ground rainfall and spatial data such as radar and satellite images by the kriging interpolation technique. For the CM-corrected Radar and CM-corrected GPM data application, the determination coefficient ($R^2$) was 0.96 respectively. The Nash-Sutcliffe efficiency (NSE) was 0.96 and the Volume Conservation Index (VCI) was 1.03 respectively. The CM-corrected data of Radar and GPM showed good results for the CHABA peak runoff and runoff volume simulation and improved all of $R^2$, NSE, and VCI comparing with the original data application. Thus, we need to use and apply the radar and satellite data to monitor the flood within the watershed.

A System Recovery using Hyper-Ledger Fabric BlockChain (하이퍼레저 패브릭 블록체인을 활용한 시스템 복구 기법)

  • Bae, Su-Hwan;Cho, Sun-Ok;Shin, Yong-Tae
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.12 no.2
    • /
    • pp.155-161
    • /
    • 2019
  • Currently, numerous companies and institutes provide services using the Internet, and establish and operate Information Systems to manage them efficiently and reliably. The Information System implies the possibility of losing the ability to provide normal services due to a disaster or disability. It is preparing for this by utilizing a disaster recovery system. However, existing disaster recovery systems cannot perform normal recovery if files for system recovery are corrupted. In this paper, we proposed a system that can verify the integrity of the system recovery file and proceed with recovery by utilizing hyper-ledger fabric blockchain. The PBFT consensus algorithm is used to generate the blocks and is performed by the leader node of the blockchain network. In the event of failure, verify the integrity of the recovery file by comparing the hash value of the recovery file with the hash value in the blockchain and proceed with recovery. For the evaluation of proposed techniques, a comparative analysis was conducted based on four items: existing system recovery techniques and data consistency, able to data retention, recovery file integrity, and using the proposed technique, the amount of traffic generated was analyzed to determine whether it was actually applicable.

Evaluation of Suitable REDD+ Sites Based on Multiple-Criteria Decision Analysis (MCDA): A Case Study of Myanmar

  • Park, Jeongmook;Sim, Woodam;Lee, Jungsoo
    • Journal of Forest and Environmental Science
    • /
    • v.34 no.6
    • /
    • pp.461-471
    • /
    • 2018
  • In this study, the deforestation and forest degradation areas have been obtained in Myanmar using a land cover lamp (LCM) and a tree cover map (TCM) to get the $CO_2$ potential reduction and the strength of occurrence was evaluated by using the geostatistical technique. By applying a multiple criteria decision-making method to the regions having high strength of occurrence for the $CO_2$ potential reduction for the deforestation and forest degradation areas, the priority was selected for candidate lands for REDD+ project. The areas of deforestation and forest degradation were 609,690ha and 43,515ha each from 2010 to 2015. By township, Mong Kung had the highest among the area of deforestation with 3,069ha while Thlangtlang had the highest in the area of forest degradation with 9,213 ha. The number of $CO_2$ potential reduction hotspot areas among the deforestation areas was 15, taking up the $CO_2$ potential reduction of 192,000 ton in average, which is 6 times higher than that of all target areas. Especially, the township of Hsipaw inside the Shan region had a $CO_2$ potential reduction of about 772,000 tons, the largest reduction potential among the hotpot areas. There were many $CO_2$ potential reduction hot spot areas among the forest degradation area in the eastern part of the target region and has the $CO_2$ potential reduction of 1,164,000 tons, which was 27 times higher than that of the total area. AHP importance analysis showed that the topographic characteristic was 0.41 (0.40 for height from surface, 0.29 for the slope and 0.31 for the distance from water area) while the geographical characteristic was 0.59 (0.56 for the distance from road, 0.56 for the distance from settlement area and 0.19 for the distance from Capital). Yawunghwe, Kalaw, and Hsi Hseng were selected as the preferred locations for the REDD+ candidate region for the deforestation area while Einme, Tiddim, and Falam were selected as the preferred locations for the forest degradation area.