• Title/Summary/Keyword: Evaluation Sheet

Search Result 510, Processing Time 0.03 seconds

Evaluation of Dietary Life Instruction in Middle School Home Economics by Converging Habermas's Three Systems of Action (Habermas의 세 행동체계를 융합한 중학교 가정교과 식생활 수업 평가)

  • Choi, Seong-Youn
    • Human Ecology Research
    • /
    • v.58 no.4
    • /
    • pp.561-583
    • /
    • 2020
  • This study developed and implemented a teaching · learning process plan for Home Economics in middle school by converging Habermas's three systems of action. It also examined the effect of the class through the evaluation of students and teachers who participated in the class. This study developed 10 sessions for a teaching and learning process plan by converging three systems of action and reconstructing learning elements related to 'balanced meal plan' and 'food choice' according to the practical action teaching model. After class, we surveyed the degree of help for students, analyzed the learning activity sheets, and analyzed the reflection journals of teachers to evaluate the effects of the class. This class was found to be the most helpful in practicing the healthy dietary life of students, expanding their thoughts, understanding learning contents, and helping them change their lives. As a result of analyzing the learning activity sheet, students gained enlightenment by reflecting and evaluating their action through the class; in addition, changes in interest, awareness, and action appeared. Through the convergence of three systems of action, teachers who practiced the class criticized and realized the act that students were unconsciously accepted. In addition, it confirmed the possibility that students could change their lives, family and society by promoting optimal nutrition and health for a good life that pursues the best good.

WORK ANALYSIS OF PLASTERBOARD-PASTING WORKERS FOCUSED ON THE SMOOTHNESS OF ACTIVITIES USING ACCELEROMETERS

  • Tomoyuki Gondo;Atsufumi Yoshimura
    • International conference on construction engineering and project management
    • /
    • 2024.07a
    • /
    • pp.303-310
    • /
    • 2024
  • In this study, we conducted a work analysis at an active building construction site, utilizing three-axis acceleration sensors affixed to four plaster-board-pasting workers for five days. Although acceleration data is less accurate than visual or image recognition in identifying specific tasks, it can be easily captured using smartphones, even in challenging conditions such as poorly lit or obstructed construction sites. This accessibility facilitates continuous data collection over extended periods, enabling automated analysis without significant cost or time investment. In addition, this method can identify trends in worker behavior that elude conventional visual inspection. Our approach encompasses various evaluation indices, beginning with an analysis of average work time per plasterboard sheet and the differentiation of walking motions using acceleration data. Furthermore, we introduced a new evaluation index that quantifies the distribution of high- and low-intensity work based on acceleration readings. Through comparative analysis with evaluation indices from previous studies, we confirmed common trends and discussed the strengths and limitations of our proposed index. Our findings suggest a correlation between work experience and performance, as evidenced by smoother operational patterns among seasoned workers. In particular, proficient workers exhibited fewer instances of extremely intense or sporadic movements. This observation underscores the influence of experience on work dynamics.

A Study on the Development of Performance Evaluation Model Utilizing BSC(Balanced Score Cards) for Construction Firms (균형성과지표(BSC) 개념의 건설기업 성과평가모델 개발에 관한 연구)

  • Shin Kyoo-Chul
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • autumn
    • /
    • pp.27-34
    • /
    • 2002
  • Utilizing information and knowledge is one of the major objectives in the management of construction firm. This trend has been developed both inside of the firms and overall industry-wise. Therefore conventional methods of performance evaluation based on the financial statements such as balance sheet under GAAP(Generally Accepted Accounting Principles) are not sufficient to cover various Performance of constriction firms. Core competency of construction firms needs to be evaluated by the new performance evaluation model. In this research, the concept of BSC (Balanced Score Cards) is utilized to develop the performance evaluation model for construction firms considering four major performance indicators including financial perspective, customer perspective, learn and growth perspective, anti internal business perspective. A model of performance evaluation including criteria is proposed to evaluate construction firms based on their vision and strategy.

  • PDF

Development of High Functional Black Resin Coated Electrogalvanized Steel Sheet for Digital TV Panel

  • Jo, Du-Hwan;Kwon, Moonjae;Lee, Jae-Hwa;Kang, Hee-Seung;Jung, Yong-Gyun;Song, Yon-Kyun;Jung, Min-Hwan;Cho, Soo-Hyoun;Cho, Yeong-Bong;Cho, Myoung-Rae;Cho, Byoung-Chon;Lim, Kwangsoo;Seon, Pan-Woo;Han, Hyeon-Soop;Jeong, Hwon-Woo;Lee, Jae-Ryung;Kim, Jong-Sang
    • Corrosion Science and Technology
    • /
    • v.12 no.1
    • /
    • pp.1-6
    • /
    • 2013
  • Recently Digital TV industry has drastically been moving the illuminating system, which causes an obvious product change from PDP and LCD to LED model to provide high-definition image. Due to strong competition in the digital industry, TV manufacturers make a great efforts to reduce production cost by using low-priced materials such as steels instead of aluminum and plastic etc. In this paper we have developed a new low-priced electrogalvanized steel sheet, which has a black resin composite layer, to substitute conventional high-priced PCM steel and plastic mold for rear cover panel in the digital TV. The black resin composite was prepared by mechanical dispersion of the mixture solution that consists of high solid polyester resin, melamine hardener, black pigment, micronized silica paste, polyacrylate texturing particle and miscellaneous additives. The composite solution was coated on the steel sheet using roll coater followed by induction furnace curing and cooling. Although the coated layer has a half thickness compared to the conventional PCM steels having $23{\mu}m$ thickness, it exhibits excellent quality for the usage of rear cover panel. The new steel sheet was applied to test products to get quality certification from worldwide electronic appliance customers. Detailed discussion provides in this paper including preparation of composite solution, roll coating technology, induction curing technology and quality evaluation from customers.

Performance Evaluation of the Vibro Hammer with Variable Amplitude by Field Tests (현장실험을 통한 저진동·저소음 진폭가변형 진동해머 성능 평가)

  • Han, Jin-Tae;Lee, Joonyong;Choi, Changho;Park, Jeong-Yel
    • Journal of the Korean Geosynthetics Society
    • /
    • v.14 no.3
    • /
    • pp.1-12
    • /
    • 2015
  • During installing sheet piles for an impermeable wall or a retaining wall, vibratory hammers are widely used. Among vibratory hammers, a hydraulic hammer is used most commonly. However, a hydraulic hammer causes excessive vibration and noise due to resonance by change of natural frequency according to movements of eccentric shaft when the hammer starts and stops. In this study, new variable amplitude type hammer is developed in order to reduce the vibration and noise due to resonance produced in starting and stopping the hammer. By controlling horizontal angle in two pairs of eccentric body inside of the hammer, the amplitude and vibration of the new hammer can be controlled. The performance tests with the new hammer and existing hammers such as the hydraulic hammer and electric hammer are carried out, and the new hammer shows reduced vibration and noise results in comparison with existing hammers from performance tests. Also, this study shows that penetration rates of sheet pile using the new hammer increase due to impellent force of a backhoe in comparison with the electric hammer and penetration rate increase in comparison with a general hydraulic hammer, since the new hammer can control the amplitude during penetration of sheet pile according to soil condition.

Evaluation of Formability and Mechanical Characteristic for Hot Forming Quenching in Sheet Forming of Al6061 Alloy (Al6061 판재성형에서 핫 포밍 ��칭의 성형성 및 기계적 특성 평가)

  • Ko, Dae Hoon;Kim, Jae Hong;Lee, Chan Joo;Ko, Dae Cheol;Kim, Byung Min
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.4
    • /
    • pp.483-490
    • /
    • 2013
  • In aluminum sheet metal forming, the conventional forming methods of T4 or T6 heat-treated sheets result in low formability and dimensional accuracy. This study suggests a new forming method for aluminum sheets called as hot forming quenching (HFQ) that solves the problems faced in the conventional method. HFQ combines the heat treatment and forming processes through the forming die during the quenching of a solid solution. To evaluate the application of HFQ to the sheet forming of aluminum, an Erichsen and V-bending test are performed in this study to measure the dimensional accuracy and formability, which are then compared with those of the conventional forming method. Furthermore, the strength and hardness of the products formed by HFQ are measured to confirm the degradation in mechanical properties compared with the conventional forming method, which shows the validity of the application of HFQ to aluminum sheet metal forming.

Performance Evaluation of Bending Strength of Curved Composite Glulams Made of Korean White Pine (잣나무 만곡 복합집성재의 휨강도 성능평가)

  • Song, Yo-Jin;Jung, Hong-Ju;Lee, In-Hwan;Hong, Soon-Il
    • Journal of the Korean Wood Science and Technology
    • /
    • v.43 no.4
    • /
    • pp.463-469
    • /
    • 2015
  • In this study, to improve bending strength performance of Korean white pine, we made the curved composite glulam that was reinforced with glass fiber materials and larch lamina. Five types of Korean white pine curved glulams were made depending on whether they had been reinforced or not and how they had been reinforced. Type-A, reference specimen, was produced only with Korean white pine lamina, and Type-B was with larch lamina in the same thickness. Type-C was made by inserting a glass fiber cloth of textile shape between the each layer. Type-D was reinforced with two glass fiber cloths, which were placed inside and outside of the outermost lamina. Type-E was reinforced with GFRP sheet in the same way as Type-D. As a result of this bending strength test, the modulus of rupture (MOR) of Type-B, Type-C and Type-E were increased by 29%, 6%, and 48% in comparison with Type-A. However, MOR of Type-D was decreased by 2% in comparison with Type-A. In the failure modes, Type-A, Type-B and Type-C were totally fractured at the maximum load. However, load values of Type-D and Type-E decreased slowly because of reinforcement of fracture suppression, and the GFRP sheet (Type-E) had better reinforcing effect on compressive stress and tensile stress than the glass fiber cloth (Type-D).

An Assessment of Utilization of the Pungchon Limestone in Paper Industry (풍촌층 석회석의 제지 산업에서의 응용성 평가)

  • Lee, Na-Kyong;Noh, Jin-Hwan
    • Journal of the Mineralogical Society of Korea
    • /
    • v.20 no.4
    • /
    • pp.339-349
    • /
    • 2007
  • For various types of the Pungchon limestone, diverse mineral characters of the limestone including their size and morphology are investigated by using of ELS and SEM to examine the possibility of application as fillers to paper industry. Also, the measurement of zeta potential and the evaluation of coagulation properties in calcite suspension was made for fine powders of the limestone to examine the applicability and efficiency in wet-papermaking process. Fine powder of the Pungchon lime-stone, largely controlled by original mineral characters of ore in mineralogical aspects, exhibits some-what different trend in particle morphology according to ore types, and thereby, the size distribution, zeta potential and coagulation properties also become different. The examined whiteness, brightness, opacity and sheet strength in hand sheet also show remarkable differences according to ore types. These are seemed to be basically due to the results of combined effects of whiteness, site distribution, refractive index, and morphology of the limestone powder on the properties of hand sheet. Considering the investigated results, all types of the Pungchon limestone appear to be sufficiently applicable to paper industry. Especially, the mega-crystalline calcite type is evaluated to be overall suitable for the purpose of paper industry due to the higher values in whiteness and brightness. In addition the fine powder of micro-crystalline calcite type is assessed particularly to have a good quality in sheet strength by virtue of irregular particle shape.

The Case Study of Design on Steel Pipe Sheet Pile for Earth Retaining Wall on Deep Excavation (대심도 지반굴착을 위한 벽강관말뚝 흙막이공법의 설계 사례 연구)

  • Byung-Il Kim;Jong-Ku Lee;Kyoung-Tae Kim;Kang-Han Hong;Sang-Jae Han
    • Journal of the Korean Geosynthetics Society
    • /
    • v.22 no.1
    • /
    • pp.53-66
    • /
    • 2023
  • In this study, the results of the elasto-plastic beam analysis, finite element analysis and optimization design of the steel pipe sheet pile applied as an earth retaining wall under the deep excavation were presented. Through this study, it was found that the high-strength and sea resistant steel pipe has high allowable stress, excellent structural properties, favorable corrosion, and high utilization as an earth retaining wall, and the C-Y type joint has significantly improved the tensile strength and stiffness compared to the traditional P-P type. In addition, it was investigated that even if the leak or defect of the wall occurs during construction, it has the advantage of being able to be repaired reliably through welding and overlapping. In the case of steel pipe wall, they were evaluated as the best in views of the deep excavation due to the large allowable bending stress and deformation flexibility for the same horizontal displacement than CIP or slurry wall. Elasto-plastic and finite element analysis were conducted in consideration of ground excavation under large-scale earth pressure (uneven pressure), and the results were compared with each other. Quantitative maximum value were found to be similar between the two methods for each item, such as excavation behavior, wall displacement, or member force, and both analysis method were found to be applicable in design for steel pipe sheet pile wall. Finally, it was found that economical design was possible when determining the thinnest filling method with concrete rather than the thickest hollow shape in the same diameter, and the depth (the embedded length through normality evaluation) without rapidly change in displacement and member force.

Evaluation of Shape Deviation in Phase Change Material Molds Subjected to Hydration Heat During Ultra-High Performance Concrete Free-form Panel Fabrication (UHPC 비정형 패널 제작 시 수화열에 의한 PCM 거푸집의 형상오차 분석)

  • Kim, Hong-Yeon;Cha, Jae-Hyeok;Youn, Jong-Young;Kim, Sung-Jin;Lee, Donghoon
    • Journal of the Korea Institute of Building Construction
    • /
    • v.23 no.3
    • /
    • pp.251-260
    • /
    • 2023
  • The construction of free-form structures with intricate curved exteriors necessitates the use of bespoke molds. To fulfill this requirement, a blend of Phase Change Material(PCM) and Ultra-High Performance Concrete(UHPC) is utilized. PCM endows the solution with recyclability, while UHPC facilitates the effortless execution of curvature in the mold fabrication process. However, it's worth mentioning that the melting point of PCM hovers around 58-64℃, and the heat emanating from UHPC's hydration process can potentially jeopardize the integrity of the PCM mold. Hence, experimental validation of the mold shape is a prerequisite. In the conducted experiment, UHPC was poured into two distinct mold types: one that incorporated a 3mm silicone sheet mounted on the fabricated PCM mold(Panel A), and the other devoid of the silicone sheet(Panel B). The experimental outcomes revealed that Panel A possessed a thickness of 3.793mm, while Panel B exhibited a thickness of 5.72mm. This suggests that the mold lacking the silicone sheet(Panel B) was more susceptible to the thermal effects of hydration. These investigations furnish invaluable fundamental data for the manufacturing of ultra-high strength irregular panels and PCM molds. They contribute substantially to the enrichment of comprehension and application of these materials within the realm of construction.