• Title/Summary/Keyword: Evacuation safety

Search Result 565, Processing Time 0.03 seconds

Analysis of the Evacuation Safety of Indoor Stadiums with Automatic Opening/Closing Exit Installations (출입문용 자동개폐장치를 설치한 실내체육관의 피난안전성 분석)

  • An, Jae-Chun;Kong, Ha-Sung
    • Journal of the Korea Safety Management & Science
    • /
    • v.22 no.3
    • /
    • pp.15-21
    • /
    • 2020
  • This study analyzed the evacuation time in indoor stadiums when exits that automatically open/close when the fire sensor is triggered are installed as a means to improve the problem of closing certain exits. Firstly, when spectators on the 2nd floor stands exit through the 1st floor exits, the RSET of all inhabitants was 529.8 seconds when the automatic opening/closing exits are broken and employees are not present. Secondly, when spectators on the 2nd floor stands exit through the 1st floor exits, the RSET of all inhabitants was 445 seconds when the automatic opening/closing exits with 750mm width are working but employees are not present. Lastly, when spectators on the 2nd floor stands exit through the 1st floor exits, the RSET of all spectators was 337 seconds when the automatic opening/closing exits with 1,500mm width are working and employees are present. As a result, it was revealed that the evacuation time is shortened when the automatic opening/closing exits are working. Additional comparative studies with actual simulations of people evacuating an indoor stadium and firefighting simulations considering smoke flow are necessary.

A Study on Ship Evacuation Safety Consequent on the Size and Sort of Fire (화재의 크기와 종류에 따른 선박 피난 안전 연구)

  • KIM, Won-Ouk;KIM, Dae-Hee
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.28 no.5
    • /
    • pp.1358-1364
    • /
    • 2016
  • Maritime accidents caused by a ship include collisions, sinking, stranding and fire etc. This study is intending to consider fire accidents among such diverse marine accidents. It is much likely that various sorts of fires break out because crewmen are living in a narrow space for long periods of time consequent on the ship's characteristic of sailing on the sea. According to the ship fire survey, about 50% of the total fire accidents occurred at an engine room, and the main fire origin was analyzed to be oil. In addition, ship fire breaks out in the order of baggage racks and living quarter. In short, the survey indicates that all sorts of fires belonging to A, B, C and D-class have occurred. This study, targeting an actual passenger ship 'A', found the response time to evacuation, during which the people on board a ship recognize the outbreak of fire, and act, and the travel time for evacuation which is the actual travel time. In addition, this study carried out a simulation through the special program for fire analysis - FDS (Fire Dynamics Simulator) in order to find the effective evacuation time, i.e. life survival time. Particularly, this study did comparative analysis of the influence on the survival of passengers and crew based on the collected simulation data by fire size and sort. As a result of the analysis, it was found that when examining the only actual evacuation movement time excepting the response time to evacuation, people are safe by completing evacuation before the effective evacuation time only in case fire size is 100Kw among all sorts of fires. In other words, in case of the outbreak of fire more than 1 MW, it was found to fail to meet evacuation safety regardless of fire size.

The Study of Crowd Movement in Stair and Turnstile of Subway Station (지하철 역사에서의 계단 및 개찰구 군중흐름에 관한 연구)

  • Kim, Myeoung-Hun;Kim, Eung-Sik;Cho, Ju-Ho
    • Journal of the Korean Society of Safety
    • /
    • v.24 no.3
    • /
    • pp.88-95
    • /
    • 2009
  • Most of subway stations are located underground and the number of passengers is far more than that of designed value, therefore the risk of accident is growing bigger and serious damage is expected in case of disaster. In Korea the period of evacuation study is short and numerical and experimental data of evacuation phenomena in subway station is rare. Many egress evaluation depend on foreign commercial S/Ws which are not yet proven its availability in special case such as subway station. In this paper outflow coefficients which are essential in egress evaluation are calculated at train door, stairway and turnstile at 3 most crowed subway stations. This numerical data can be used in prediction of egress evaluation and the result of other prediction methods can be verified with these experimental data.

A Study on the Evacuation Performance of Evacuation System using Real-time IoT Information (실시간 IoT 정보 활용 피난시스템의 피난성능 연구)

  • Lee, Chul Gyoo;Moon, Sang Ho;Lee, Sang Kyu;Lee, Gye Eun
    • Journal of Korea Multimedia Society
    • /
    • v.22 no.2
    • /
    • pp.281-291
    • /
    • 2019
  • In order to reflect complex and diverse building types, resident characteristics and disaster factors, it is necessary to introduce a flexible situation-based response system based on real-time information. Intelligent CCTV, hybrid sensor, location scanner, and customized broadcasting device were examined to introduce for the real-time response intelligent response system and its feasibility was verified through field test. In addition, based on the real-time information, the evacuation simulation was executed by assuming the dormitory building and the resident of the school, and the safety of the evacuation and the shortening of the pinnacle time were confirmed. The feasibility of real time information based evacuation comparing with the existing evacuation system were verified in the case of evacuation.

Emergency Evacuation Scenario Study of Urban Metro Vehicle Running on Elevated Guideway (도시철도차량의 고가선로 비상대피 시나리오 분석)

  • Kim, Young-Sang;Maeng, Hee-Young;Wang, Jong-Bae
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.3
    • /
    • pp.117-124
    • /
    • 2012
  • There have been recently introduced new types of urban metro vehicles called LRT (Light Rail Transit) running on elevated guideway such as Uijeongbu VAL(which stands for V$\acute{e}$hicule Automatique L$\acute{e}$ger: Automatic Light Rail Vehicle) system, Yong-In LIM(Linear Induction Motor) system, Incheon international airport MAGLEV(Magnetic Levitated Vehicle) system and Daegu monorail system. Most of accidents by the vehicles are bound to happen on elevated guideway. Therefore, it is of vital importance to analyze hazards related to vehicles running on elevated guideway and study emergency evacuation scenarios applicable in case of accidents on elevated guideway so as to secure the safety of the new types of urban metro vehicles. In this study, FTA(Fault Tree Analysis) model was developed to identify all possible hazards, and all possible evacuation scenarios were studied. It was also confirmed that each hazard can be corresponded to one or more evacuation scenarios. This result shows that passengers can be evacuated according to one of the scenarios identified in this study in case of an accident of "Train Stranded on Elevated Guideway".

Risk Evaluation and Analysis on Simulation Model of Fire Evacuation based on CFD - Focusing on Incheon Bus Terminal Station (CFD기반 화재 대피 시뮬레이션 모델을 적용한 위험도 평가 분석 -인천터미널역 역사를 대상으로)

  • Kim, Min Gyu;Joo, Yong Jin;Park, Soo Hong
    • Spatial Information Research
    • /
    • v.21 no.6
    • /
    • pp.43-55
    • /
    • 2013
  • Recently, the research to visualize and to reproduce evacuation situations such as terrorism, the disaster and fire indoor space has been come into the spotlight and designing a model for interior space and reliable analysis through safety evaluation of the life is required. Therefore, this paper aims to develop simulation model which is able to suggest evacuation route guidance and safety analysis by considering the major risk factor of fire in actual building. First of all, we designed 3D-based fire and evacuation model at a subway station building in Incheon and performed fire risk analysis through thermal parameters on the basis of interior materials supplied by Incheon Transit Corporation. In order to evaluate safety of a life, ASET (Available Safe Egress Time), which is the time for occupants to endure without damage, and RSET (Required Safe Egress Time) are calculated through evacuation simulation by Fire Dynamics Simulator. Finally, we can come to the conclusion that a more realistic safety assessment is carried out through indoor space model based on 3-dimension building information and simulation analysis applied by safety guideline for measurement of fire and evacuation risk.

A Study on Safety Assessment of the Evacuation at the Large-scale Amusement Facilities (대규모 위락시설의 피난안전성능 평가에 관한 연구)

  • Park, Bong-Rae;Kong, Ha-Sung
    • Fire Science and Engineering
    • /
    • v.23 no.4
    • /
    • pp.165-173
    • /
    • 2009
  • As the Performance Based Fire Protection Design is legislated, studies on a fire and evacuation are actively in progress. The Performance Based Fire Protection Design should be developed toward enlarging the Life safety. In addition, the Performance Based Fire Protection Design shall not merely review the aspects of fire fighting but it shall also include regulations pertaining to evacuation stipulated in laws and regulations for buildings. This study performed an evacuation time prediction based on OO Night Club, one of the multiplex use facilities located in Gwang-ju Metropolitan City in order to suggest as a referential data for the Performance Based Fire Protection Design implementation. To do this, I investigated domestic and foreign regulations and research papers related to evacuation and went to visit the actual site and collected materials. The collected data was then used as ones to input in Simulex, an evacuation program to measure evacuation time. The collected data was then used as data to input in Simulex, an evacuation program to measure evacuation time. Through this particular research and results, the study was able to suggest a few concerning areas.

A Study on Fire and Evacuation of TrainingShip HANBADA using FDS (FDS를 이용한 실습선 한바다호 화재 및 피난 연구)

  • KIM, Won-Ouk
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.29 no.2
    • /
    • pp.380-385
    • /
    • 2017
  • Maritime accidents caused by a ship include collisions, sinking, stranding and fire etc. This study is intending to consider fire accidents among such diverse marine accidents. It is much likely that various sorts of fires break out because crews are living in a narrow space for long periods of time consequent on the ship's characteristic of sailing on the sea. This study carried out a simulation through the special program for fire analysis - FDS (Fire Dynamics Simulator) in order to find the effective evacuation time, i.e. life survival time. Particularly, this study did comparative analysis of the influence on the survival of cadets based on the collected simulation data by fire size and sort. As a result of the analysis, It was analyzed the Evacuation Allowable Limit Temperature $60^{\circ}C$ and resulted that there is no influence in evacuation by temperature. In case of visibility analysis, it reached to 5m which is the Evacuation Allowable Limit at 117 seconds under the condition of wood fire in 1MW. When there is Kerosene in 1MW, it took 92.4 seconds to reach by 5m which is the Evacuation Allowable Limit. Theoretical evacuation time for the non-tilted ship was 118.8 seconds in 1MW sized fire so it is shown that the most passengers are met the evacuation safety in case of wood fire. However, the majority of passengers could not be ensured the evacuation safety in Kerosene case.

Selection of Transition Point through Calculation of Cumulative Toxic Load -Focused on Incheon Area- (누적독성부하 산정을 통한 주민소산 전환시점 선정에 관한 연구 -인천지역을 중심으로-)

  • Lee, Eun Ji;Han, Man Hyeong;Chon, Young Woo;Lee, Ik Mo;Hwang, Yong Woo
    • Journal of the Korean Society of Safety
    • /
    • v.35 no.6
    • /
    • pp.15-24
    • /
    • 2020
  • With the development of the chemical industry, the chemical accident is increasing every year, thereby increasing the risk of accidents caused by chemicals. The Ministry of Environment provides the criteria for determining shelter-in-place or outdoor evacuation by material, duration of accident, and distance from the toxic substance leak. However, it is hard to say that the criteria for determining the transition point are not clear. Transition point mean the time that evacuation method is switched from shelter-in-place to outdoor evacuation. So, the purpose of this study was to calculate appropriate transition point by comparing the cumulative toxic load. Namdong-gu in Incheon Metropolitan City was finally selected as the target area, considering the current status of the population of Incheon Metropolitan City in 2016 and the statistical survey of chemicals in 2016. The target materials were HCl, HF, and NH3. Modeling was simulated by ALOHA and performed assuming that the entire amount would be leaked for 10 min. Residents' evacuation scenarios were assumed to be shelter-in-place, immediate outdoor evacuation, and outdoor evacuation at an appropriate time after shelter-in-place. Based on the above method, the appropriate transition point from residents located in A(800 m away), B(1,200 m away), C(1,400 m away) and D(2,200 m away) was identified. In HCl, appropriate transition point was after 15 min, after 16 min, after 17 min, after 20 min in order by A, B, C and D. In HF, appropriate transition point was before 1 min or after 16 min, before 4 min or after 19 min, before 5 min or after 20 min, before 14 min or after 26 min in order by A, B, C and D. In NH3, appropriate transition point at A was before 4 min or after 16. Others are not in chemical cloud. This study confirmed the transition point to minimize the cumulative toxic load can be obtained by quantitative method. Through this, it might be possible to select evacuation method quantitatively that cumulative toxic load are minimal. In addition, if the shelter-in-place is maintained without transition to outdoor evacuation, the cumulative toxic load will increase more than outdoor evacuation. Therefore, it was confirmed that actions to reduce the concentration of chemicals in the room were necessary, such as conducting ventilation after the chemical cloud passed through the site.

Optimal Deployment for Evacuation Safety Zone at Intermodal Transfer Station (복합환승센터 피난대피구역 적정 배치 방법론 개발)

  • You, So-Young;Jeong, Eunbi
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.18 no.1
    • /
    • pp.27-42
    • /
    • 2019
  • It is not easy to evacuate when people face with emergency situation in deep underground space because space perception and synthetic judgement are readily lowered. In stead of evacuating safely outside within the given time, evacuation safety zone is required to be designed and installed. In this study, PATS (Pedestrian movement based Assessment Toolkit for Simulation) is applied to build a comprehensive and analytic framework for seeking the optimal (or proper) numbers and locations of evacuation safety zone. With two scenarios of emergency situation at intermodal transfer center with the 6 floor in underground, the problematic location on the evacuation path has been identified and the proper locations has been presented.