• 제목/요약/키워드: Evacuation measure

Search Result 47, Processing Time 0.021 seconds

Measurement of the Device Properties of a Ionization Smoke Detector to Improve Predictive Performance of the Fire Modeling (화재모델링 예측성능 개선을 위한 이온화식 연기감지기의 장치물성 측정)

  • Kim, Kyung-Hwa;Hwang, Cheol-Hong
    • Fire Science and Engineering
    • /
    • v.27 no.4
    • /
    • pp.27-34
    • /
    • 2013
  • The high prediction performance of fire detector models is essentially needed to assure the reliability of fire and evacuation modeling in the process of PBD (Performance Based fire safety Design). The main objective of the present study is to measure input information in order to predict the accurate activation time of smoke detector into a Large Eddy Simulation (LES) fire model such as FDS (Fire Dynamics Simulator). To end this, FDE (Fire Detector Evaluator) which can measure the device properties of detector was developed, and the input information of Heskestad and Cleary's models was measured for a ionization smoke detector. In addition, the activation times of smoke detectors predicted using default values into FDS and measured values in the present study were systematically compared. As a result, the device properties of smoke detector examined in the present study showed a significant difference compared to the default values used into FDS, which resulted in the considerable difference of up to 15 minutes or more in terms of the activation time of smoke detector. The database (DB) on device properties of various smoke and heat detectors will be built to improve the reliability of PBD in future studies.

A Study on Improvement of Operation Characteristics and Inspection Method of Standby Power Supply such as Emergency Induction Light using Li-ion Capacitor (리튬이온커패시터를 활용한 비상유도등 예비전원장치의 동작 특성 및 점검방법 개선에 관한 연구)

  • Jung, Jun-Chea
    • Journal of the Society of Disaster Information
    • /
    • v.16 no.2
    • /
    • pp.392-401
    • /
    • 2020
  • Purpose: This study analyzes the operating characteristics of a lithium ion capacitor that can be used as a standby power supply in an emergency, and determines whether the standby power supply is abnormal even by measuring the voltage using a linear proportionality characteristic during charging and discharging. The aim is to provide an experimental basis that can be done. Method: As a method for this study, first, analyze the operation principle and characteristics of the existing backup power supply and lithium ion capacitor, and then measure the voltage of the lithium ion capacitor according to the configuration and system block diagram of the induction lamp used in the experiment. We proceed with the test of the measured value of discharge power for each voltage band to check the amount of power held by the battery and the operation test experiment using induction lamps. Results: Just by checking the charging voltage using the linear proportional characteristics of lithium ion capacitors, it provides a basis for accurately inferring the effective operating time of induction lamp lamps. Conclusion: In the event of a disaster, the lithium ion capacitor is used as a spare power supply for emergency induction lamps to prevent complete discharge of emergency induction lamps, to prevent the problem of performing normal operation of the standby power supply, and to use only a simple voltage measurement to reserve power. It was intended to suggest many uses for evacuation equipment application in the future by making it possible to check whether the device is abnormal.

Measurement of the Device Properties of Photoelectric Smoke Detector for the Fire Modeling (화재모델링을 위한 광전식 연기감지기의 장치물성 측정)

  • Cho, Jae-Ho;Mun, Sun-Yeo;Hwang, Cheol-Hong;Nam, Dong-Gun
    • Fire Science and Engineering
    • /
    • v.28 no.6
    • /
    • pp.62-68
    • /
    • 2014
  • The high predictive performance of fire detector models is essentially required for the reliable design of evacuation safety using the fire modeling. The main objective of the present study is to measure input information in order to predict the accurate activation time of photoelectric smoke detector adopted in fire dynamics simulator (FDS) recognized a representative fire model. To end this, the fire detector evaluator (FDE) which could be measured the device properties of detector was used, and the input information of Heskestad and Cleary's models was obtained for a spot-type photoelectric smoke detector. In addition, the activation times of smoke detector predicted using default values into FDS and measured values in the present study were quantitatively compared. As a result, the Heskestad model could result in an inaccurate the activation time of photoelectric smoke detector compared to the Cleary model. In addition, there was a distinct difference between the default values used into FDS and the measured values in terms of device properties of smoke detector, and thus the activation time also showed a significant difference.

Measurement of the Device Properties of Fixed Temperature Heat Detectors for the Fire Modeling (화재모델링을 위한 정온식 열감지기의 장치물성 측정)

  • Park, Hee-Won;Cho, Jae-Ho;Mun, Sun-Yeo;Park, Chung-Hwa;Hwang, Cheol-Hong;Kim, Sung-Chan;Nam, Dong-Gun
    • Fire Science and Engineering
    • /
    • v.28 no.1
    • /
    • pp.37-43
    • /
    • 2014
  • The high predictive performance of fire detector models is essentially needed to assure the reliability of fire and evacuation modeling in the process of Performance-Based fire safety Design (PBD). The main objective of the present study is to measure input information in order to predictive the accurate activation time of fixed temperature heat detectors adopted in Fire Dynamics Simulator (FDS) as a representative fire model. To end this, Fire Detector Evaluator (FDE) which could be measured the device properties of detector was used, and the spot-type fixed temperature heat detectors of two thermistor types and one bimetal type were considered as research objectors. Activation temperature and Response Time Index (RTI) of detectors required for the fire modeling were measured, and then the RTI was measured for ceiling jet flow and vertical jet flow in consideration of the install location of detectors. The results of fire modeling using measured device properties were compared and validated with the experimental results of full-scale compartment fires. It was confirmed that, in result, the numerically predicted activation time of detector showed reasonable agreement with the measured activation time.

A Study on the Adequacy Evaluation of Criteria of Occupant Load Density in School Classrooms (학교 교실의 재실자밀도 기준 적정성 평가에 관한 연구)

  • Seo, Dong-Goo;Hwang, Eun-Kyoung
    • Fire Science and Engineering
    • /
    • v.32 no.6
    • /
    • pp.134-140
    • /
    • 2018
  • This study examined the adequacy of a school classroom's occupant load density standard to cope with the issues associated with the decreasing number of students and regional variations. Therefore, this study analyzed the occupant load density standards of kindergarten, elementary school, middle school, high school, and universities using the data open to the public by the Ministry of Education. The results revealed a high variance in the occupant load density according to the school type. The median values were 1.49, 3.45, 2.64, 2.45, and $3.41m^2/person$ for kindergarten, elementary school, middle school, high school, and universities, respectively. Although the occupant load density was higher than the current standard ($1.9m^2/person$), except for kindergarten, the present standard did not need to be improved immediately, considering the purpose of calculating the maximum occupancy. On the other hand, if improvements are made in line with other enhancements of a national education policy, it will be possible to mitigate the measure to $2.5m^2/person$ based on the survey results.

A Study on the Safety Measures for Typhoon Shelter in Jinhae Bay Based on AHP Assessment (AHP 기법 기반 진해만 태풍 피항지 내 안전대책에 관한 연구)

  • Kim, Ni-Eun;Lee, Myoung-Ki;Camliyurt, Gokhan;Park, Do-Hyeong;Kim, Dae-Won;Park, Young-Soo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.4
    • /
    • pp.507-514
    • /
    • 2022
  • Jinhae Bay is used as a major typhoon shelter in the southeastern region of Korea. However, when a typhoon strikes, the Jinhae Bay is facing the possibility of marine accidents caused by dragging anchors and the increased number of ships. This paper suggested ways to safely and efficiently manage the port of Jinhae Bay when a typhoon strikes from Vessel traffic service operators in the sea, derived relative importance by conducting an Analytic Hierarchy Process assessment to ship operators, and suggested safety measures reflecting manager and user opinions. In order to select safety measures factors for the AHP survey, VTS operators analyzed the evaluation of measures when a typhoon strikes in Jinhae Bay. As a result of conducting a survey based on the selected safety measure factors, it was found that ship operators consider the safety of ships more than twice as important as efficient management, and comprehensively consider them in the order of management of evacuated ships, management of anchorage area, management of evacuation information, preparation regulations and guidelines, improvement of system equipment, education, publicity, and notification activities. Through the measures and relative importance identified in this paper, it is believed that Jinhae Bay can serve as the basis for safely and efficiently managing typhoon shelters.

Physical Model Experiment for Estimating Wave Overtopping on a Vertical Seawall under Regular Wave Conditions for On-Site Measurements (현장 월파계측을 위한 규칙파 조건에서 직립식 호안의 월파량 추정에 관한 모형실험)

  • Dong-Hoon Yoo;Young-Chan Lee;Do-Sam Kim;Kwang-Ho Lee
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.35 no.4
    • /
    • pp.75-83
    • /
    • 2023
  • Apart from implementing hardware solutions like raising the crest freeboard of coastal structures to efficiently counter wave-overtopping, there is a simultaneous requirement for software-driven disaster mitigation strategies. These tactics involve the swift and accurate dissemination of wave-overtopping information to the inland regions of coastal zones, enabling the regulation of evacuation procedures and movement. In this study, a method was proposed to estimate wave-overtopping by utilizing the temporal variation of wave heights exceeding the structure's crown level, with the aim of developing an on-site wave measurement system for providing wave-overtopping information in the field. Laboratory model experiments were conducted on vertical seawall structures to measure wave-overtopping volumes and wave runup heights under different wave conditions and structural freeboard variations. By assuming that the velocity of water inundation on the top of the structure during wave-overtopping events is equivalent to the long-wave velocity, an overtopping discharge coefficient was introduced. This coefficient was utilized to estimate the rate of wave-overtopping based on the temporal changes in wave runup heights measured at the top of the structure. Upon reasonably calculating the overtopping discharge coefficient, it was verified that the estimation of wave-overtopping could be achieved solely based on the wave runup heights.