• Title/Summary/Keyword: Evacuation Simulation

Search Result 319, Processing Time 0.025 seconds

Analysis of University Cafeteria Safety Based on Pathfinder Simulation

  • Zechen Zhang;Jaewook Lee;Hasung Kong
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.16 no.2
    • /
    • pp.209-217
    • /
    • 2024
  • Recent years have seen a notable increase in fire incidents in university cafeterias, yet the social attention to these occurrences remains limited. Despite quick responses to these incidents preventing loss of life, the need for large-scale evacuation in such high foot traffic areas can cause significant disruptions, economic losses, and panic among students. The potential for stampedes and unpredictable damage during inadequate evacuations underscores the importance of fire safety and evacuation research in these settings. Previous studies have explored evacuation models in various university environments, emphasizing the influence of environmental conditions, personal characteristics, and behavioral patterns on evacuation efficiency. However, research specifically focusing on university cafeterias is scarce. This paper addresses this gap by employing Pathfinder software to analyze fire spread and evacuation safety in a university cafeteria. Pathfinder, an advanced emergency evacuation assessment system, offers realistic 3D simulations, crucial for intuitive and scientific evacuation analysis. The studied cafeteria, encompassing three floors and various functional areas, often exceeds a capacity of 1500 people, primarily students, during peak times. The study includes constructing a model of the cafeteria in Pathfinder and analyzing evacuation scenarios under different fire outbreak conditions on each floor. The paper sets standard safe evacuation criteria (ASET > RSET) and formulates three distinct evacuation scenarios, considering different fire outbreak locations and initial evacuation times on each floor. The simulation results reveal the impact of the fire's location and the evacuation preparation time on the overall evacuation process, highlighting that fires on higher floors or longer evacuation preparation times tend to reduce overall evacuation time.In conclusion, the study emphasizes a multifaceted approach to improve evacuation safety and efficiency in educational settings. Recommendations include expanding staircase widths, optimizing evacuation routes, conducting regular drills, strengthening command during evacuations, and upgrading emergency facilities. The use of information and communication technology for managing emergencies is also suggested. These measures collectively form a comprehensive framework for ensuring safety in educational institutions during fire emergencies.

Evacuation Safety Evaluation According to Slope of the School Ramps

  • Choi, Chang-Jun;Kong, Ha-Sung
    • International journal of advanced smart convergence
    • /
    • v.10 no.1
    • /
    • pp.184-196
    • /
    • 2021
  • This study, in order to evaluate the safety of evacuation by comparing and analyzing the RSET according to the slope change of the ramp, which is a vertical evacuation route in case of fire in a high school building, Evacuation simulation was run the Pathfinder program changed the slope of the ramp to 10°, 15°, and 20° for each male students and female students. In the case of female students, it was analyzed that when the final RSET slope was 15°, 25.7 seconds were shorter than when 10°, and 4.2 seconds were shorter than when 20°. Male students also found that when the final RSET slope was 15°, 23.8 seconds were shorter than when 10°, and 5.4 seconds shorter than when 20°. It was analyzed that even if the number of participants was increased and the evacuation simulation was executed, the safety of evacuation could be improved when the slope of the slope is 15° as the RSET when the slope of the slope is 15° is shorter than that of 10° and 20°.

A Space Analysis Model of Evacuation Overcrowding at Hospital Outpatient Department (병원 외래진료부에서의 피난 과밀 공간 분석 모델에 관한 연구)

  • Lee, Joohee;Kewon, Jihoon
    • Journal of the Regional Association of Architectural Institute of Korea
    • /
    • v.21 no.3
    • /
    • pp.109-116
    • /
    • 2019
  • This study aimed to suggest a quantitative model analyzing overcrowding area under emergency evacuation situation in the outpatient department of hospital. Overall study process included the review on legal conditions of an emergency evacuation, the investigation of precedent research documents and the analysis of spatial configuration. The user movement with considering exit gates and the one without considering exit gates were analyzed for routine activity condition. An agent-based simulation was applied for the analysis. Also, user movement for the emergency condition was tested with evacuation simulation. The variation of simulation conditions revealed the difference between overcrowding spaces from situation change. At all nodes, visit frequencies derived from different conditions and situations were compared. The overcrowding spaces are to increase the risk of delaying emergency evacuation time which is critical for user safety. It suggests the need for dispersing overcrowding spaces under evacuation situation. The suggested analysis model can evaluate overcrowding spaces in the outpatient department of hospital and provide locational data for distributing evacuation design resources.

A Study on the Calculation of Evacuation Capacity for the Development of Korean Life Safety Standards for Medical facilities (의료시설의 한국형 인명안전기준개발을 위한 피난용량 산정에 관한 연구)

  • Choi, Yun-Ju;Kim, Yun-Seong;Jin, Seung-Hyeon;Kwon, Young-Jin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.11a
    • /
    • pp.92-93
    • /
    • 2021
  • In the case of medical facilities, the evacuation time is delayed due to the decrease in the number of people in the hallway and exits due to the increase in the width of evacuation by using mobile beds, wheelchairs, crutches, etc. Accordingly, it is considered to secure evacuation capacity to reduce evacuation time according to corridor width and exit width. Accordingly, we would like to compare the standards related to the evacuation capacity of medical facilities in Korea and NFPA, derive differences, and use evacuation simulations to compare evacuation times according to changes in corridor width and exit width. In Korea, it is calculated based on the floor area by use, but in the case of NFPA 101, the number of evacuation routes, stair width, corridor exit width, and two-way door width was stipulated depending on the number of people. Using evacuation simulation, efficient evacuation capacity is calculated according to the reduction of evacuation time by changing the width of the hallway, changing the width of the exit, the width of the corridor, and the width of the exit. The evacuation simulation is intended to be used to secure evacuation safety of domestic medical facilities by calculating the effective evacuation time reduction by changing the width of the hallway and exit.

  • PDF

The Passenger Evacuation Simulation Using Fluent and EXODUS (Fluent와 EXODUS를 이용한 승객피난 시뮬레이션)

  • Jang, Yong-Jun;Lee, Chang-Hyun;Park, Won-Hee;Jung, Woo-Sung
    • Journal of the Korean Society for Railway
    • /
    • v.11 no.1
    • /
    • pp.95-100
    • /
    • 2008
  • The simulation analysis of fire-driven flow and passenger evacuation in Daegu subway station, Chung-Ang, have been performed. The first location of outbreak of fire is inside passenger car in the third basement in Chung-Aug station, The smoke flow in the second and third basement has been analyzed using FLUENT 6.2. The CO (carbon monoxide) and temperature distribution in the train units and station platform have been obtained and transferred to input data for evacuation simulation. The highest temperature in the train units was 1500k. For the simulation of passenger evacuation, EXODUS has been used for whole basements (level 1${\sim}$level 3) in the station. Total number of people was assumed to be one thousand and 640 were placed inside train and 360 were placed outside train. In evacuation simulation, an average of 135 passengers were killed and an average time to evacuate takes 10min 19sec. The main evacuation routes used by passengers were investigated and the cause of death was identified by evacuation simulation.

A Study on Perfomance Based Evacuation Plan for a Large Indoor-Arena (대규모 실내경기장의 성능위주 방재계획에 관한 연구)

  • Choi, Yong-Seok;Kim, Hyung-Keun;Lee, Kyoo-Il
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.10
    • /
    • pp.687-698
    • /
    • 2011
  • In this study, it was analyzed by a numerical analysis that plan/design considerations for ensuring the spectator safety of large arena audiences in a fire emergency evacuation plan. The latest issue, the 'performance-based design', fire and evacuation plan is important. But nowadays 'Specification-based design' is in common. In evacuation simulation, congestion of exit and aisle is ignored because only evacuation time of large-space is mainly analyzed. In smoke flow,'smoke filling effect' tends to be overrated. From now on, when design a field house, it is needed not 'smoke filling effect' and 'large-space evacuation' analysis, but analyzing 'whole building evacuation time' for ensuring fire evacuation safety of spectator.

A Study on the Relationship Analysis Model between Visibility and Evacuation Time by User's Movement in the Lower Floor of General Hospital (종합병원 저층부에서의 이용자 이동에 따른 가시성과 피난 시간의 상관관계 분석 모델에 관한 연구)

  • Jung, Gi Hyun;Kweon, Jihoon
    • Journal of the Regional Association of Architectural Institute of Korea
    • /
    • v.21 no.3
    • /
    • pp.11-21
    • /
    • 2019
  • The purpose of this study was to present an analysis model for finding the correlation between visibility and evacuation time as users move in the outpatient department of the general hospital. The spatial scope of the study was limited to the first floor and second floor which are used for the outpatient department. Traffic density in outpatient departments was surveyed on site. Based on the surveyed traffic density, the evacuation simulation model was established for calculating the escape route and evacuation time for an individual user. The traffic density of the outpatient department as per the evacuation time was also calculated. With using evacuation simulations, the flow of evacuees was calculated through the density of traffic over the time of evacuation. Visibility data were set in the simulation model for users' escape routes. A correlation analysis between the product of evacuation flow measure and visibility measure of the evacuation population and evacuation time was performed. The analysis result showed negative correlation within a specific distance range. This study presented an analysis model showing that the evacuation condition considering spatial visibility in the outpatient department of general hospital visibility was negatively related to the analyzed evacuation time at the design stage.

The Analysis of Evacuation Safety by Smoke Alarm in Housing Fire (주택형화재경보기 작동에 따른 피난안전해석)

  • Choi, Young-Sang;Jeon, Heung-Kyun;Bak, Yeul-Sun
    • Fire Science and Engineering
    • /
    • v.25 no.6
    • /
    • pp.73-82
    • /
    • 2011
  • This study was performed to analysis the influence of smoke alarm detector on evacuation safety in housing fire. The analysis was conducted by CFAST fire simulation program and building EXODUS evacuation program. The effects of the earlier response time on evacuation safety were investigated by using evacuation simulation program with several steps of different response time and smoke alarm activation time for 4 occupants. The smoke detecter was activated 37.1 second after fire. The first two mortuary were occurred for 170 seconds of response time at the end of living room near exit. But for the 37.1 seconds of response time 4 occupants evacuated safely. From this study, the fire alarm detector is more important for safety evacuation in housing fire.

Evacuation Simulation for the Exit with a Windbreak Door in Underground Arcade (지하상가 출입구 방풍문 설치에 따른 피난안전해석)

  • Choi, Young-Sang;Jeon, Heung-Kyun;Choo, Hong-Lok
    • Fire Science and Engineering
    • /
    • v.23 no.3
    • /
    • pp.1-10
    • /
    • 2009
  • This paper presents a study on the evacuation analysis in underground arcade. In this study, the effect of the exit with a windbreak door has been investigated by using evacuation simulation program (building EXODUS). Also, the simulation has included the impact of smoke, heat and toxic gases by fire simulation program (CFAST). The results were obtained for the conditions of without and with door of the two exit with 1,088 evacuation population. As a results, for non-fire evacuation, there was only a little difference of evacuation time for both conditions. However, for fire emergency evacuation, the evacuation time for the condition with door increased more 110 seconds than for the condition without door. When the auto door not opened, the evacuation time was increased more 670 seconds than for the condition without door. Consequently, in case of fire, the automatic door should be operating by the signal of fire detector and keep open when the fire accidents. To lead the evacuees well to the escape route the luminaries for an emergency exit sign have to be reinforced to the wall and floor around the exit.

A Development of Fire Evacuation Simulation System Based 3D Modeling (3차원 공간 기반의 화재피난 시뮬레이션 시스템 개발)

  • Hwang, Yeon-Jung;Koo, Won-Yong;Hwang, Yen-Kyung;Youn, Ho-Ju
    • Fire Science and Engineering
    • /
    • v.25 no.6
    • /
    • pp.156-167
    • /
    • 2011
  • The number of buildings is growing at a rapid pace in Korea. It is driven by significant economic improvements, the rapid population growth and urban centralization. Such being this case, some city are underway to building enlargement, Manhattanization. To Solve these problem and ensure the safety of live, fire Evacuation Simulation system is used for safe check of buildings. Forecasting an egress behavior in building fire is so important in order to construct a safe and reliable environment. But, currently most of the fire evacuation simulation system used in practice are foreign software that is not reflect korean conditions. Thus, This study focus on objectives that develop a fire evacuation system considering Korean Characteristics and create 3D space-based topology. so the system calculate evacuation path. This system developed as a result of research can be used by architectural designer in practice due to it is based 3D spatial information modeling.