• Title/Summary/Keyword: Evacuation Path

Search Result 75, Processing Time 0.019 seconds

An Optimal Model for Indoor Pedestrian Evacuation considering the Entire Distribution of Building Pedestrians (건물내 전체 인원분포를 고려한 실내 보행자 최적 대피모형)

  • Kwak, Su-Yeong;Nam, Hyun-Woo;Jun, Chul-Min
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.20 no.2
    • /
    • pp.23-29
    • /
    • 2012
  • Existing pedestrian and evacuation models generally seek to find locally optimal solutions for the shortest or the least time paths to exits from individual locations considering pedestrian's characteristics (eg. speed, direction, sex, age, weight and size). These models are not designed to produce globally optimal solutions that reduce the total evacuation time of the entire pedestrians in a building when all of them evacuate at the same time. In this study, we suggest a globally optimal model for indoor pedestrian evacuation to minimize the total evacuation time of occupants in a building considering different distributions of them. We used the genetic algorithm, one of meta-heuristic techniques because minimizing the total evacuation time can not be easily solved by polynomial expressions. We found near-optimal evacuation path and time by expressing varying pedestrians distributions using chromosomes and repeatedly filtering solutions. In order to express and experiment our suggested algorithm, we used CA(cellular automata)-based simulator and applied to different indoor distributions and presented the results.

A study of evacuation time in a subway carriage fire (지하철 객차 화재발생시 피난 시간에 대한 연구)

  • Kim, Seong-Ryul;Roh, Jae-Seong;Ro, Kyoung-Chul;Ryou, Hong-Sun
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.1313-1318
    • /
    • 2007
  • Recently, the terror frequently has taken place for unspecified individuals as modern society is complicated. Especially, in case of a subway carriage fire as Daegu subway fire, because smoke spread path usually coincide with passenger's evacuation path, it will reduce visibility and can cause fatalities by asphyxiation. This study performs not only fire simulation with CFAST V6 but also evacuation simulation with EXODUS V4 for the purpose of taking measures for passengers's life safety in subway fire. As a result of evacuation simulation without fire, evacuation times are 36 s for EXODUS V4 and simple hand calculation, and when fire is occurred fire, 101 persons evacuated in 32 s. Therefore, a countermeasure of evacuation in subway carriage fire is required to repression of fire and emergency exit.

  • PDF

Simulation Analysis of Safety Evacuation in University Experiment Building

  • Tao Zhang;Ha-Sung Kong
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.16 no.2
    • /
    • pp.218-226
    • /
    • 2024
  • According to the actual situation of a university, the emergency evacuation simulation is modeled based on the physical sign, evacuation speed and personnel ratio using the pathfinder software.The experimental construction export utilization rate is compared with the preliminary simulation scenario. The simulation results show that the utilization rate of evacuation stairs and evacuation exits is significantly improved.The optimized solution can provide the most effective evacuation passage, and the research results can provide the basis for the rational planning and management of evacuation passage in university experiment building.

The Effect of Photoluminescent Exit Path Markings in Evacuation from Buildings (건축물 내에서 축광유도타일이 피난에 미치는 영향)

  • Hur, Man-Sung
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.5 no.3 s.18
    • /
    • pp.67-72
    • /
    • 2005
  • This study is intended to examine the effect of photoluminescent exit path markings in the event of failure of both the power and back-up power to the lighting and illuminated exit sign. To achieve the purpose, the test house was exhibited in Fire EXPO '05. 520 visitors were examined from May 26-29, 2005. The results of this study are as follows; The evacuation from buildings in dark conditions showed that 70% of men and 72% of women were crawled along the wall. Meanwhile, 88% of men and 83% of women were evacuated with ordinary walking in photoluminescent exit path markings. The photoluminescent exit path markings located on public buildings floors will aid in evacuation from buildings in the event of failure of the power to the lightings and illuminated exit signs.

Planning Evacuation Routes with Load Balancing in Indoor Building Environments (실내 빌딩 환경에서 부하 균등을 고려한 대피경로 산출)

  • Jang, Minsoo;Lim, Kyungshik
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.5 no.7
    • /
    • pp.159-172
    • /
    • 2016
  • This paper presents a novel algorithm for searching evacuation paths in indoor disaster environments. The proposed method significantly improves the time complexity to find the paths to the evacuation exit by introducing a light-weight Disaster Evacuation Graph (DEG) for a building in terms of the size of the graph. With the DEG, the method also considers load balancing and bottleneck capacity of the paths to the evacuation exit simultaneously. The behavior of the algorithm consists of two phases: horizontal tiering (HT) and vertical tiering (VT). The HT phase finds a possible optimal path from anywhere of a specific floor to the evacuation stairs of the floor. Thus, after finishing the HT phases of all floors in parallel the VT phase begins to integrate all results from the previous HT phases to determine a evacuation path from anywhere of a floor to the safety zone of the building that could be the entrance or the roof of the building. It should be noted that the path produced by the algorithm. And, in order to define the range of graph to process, tiering scheme is used. In order to test the performance of the method, computing times and evacuation times are compared to the existing path searching algorithms. The result shows the proposed method is better than the existing algorithms in terms of the computing time and evacuation time. It is useful in a large-scale building to find the evacuation routes for evacuees quickly.

Real-time Intelligent Exit Path Indicator Using BLE Beacon Enabled Emergency Exit Sign Controller

  • Jung, Joonseok;Kwon, Jongman;Jung, Soonho;Lee, Minwoo;Mariappan, Vinayagam;Cha, Jaesang
    • International journal of advanced smart convergence
    • /
    • v.6 no.1
    • /
    • pp.82-88
    • /
    • 2017
  • Emergency lights and exit signs are an indispensable part of safety precautions for effective evacuation in case of emergency in public buildings. These emergency sign indicates safe escape routes and emergency doors, using an internationally recognizable sign. However visibility of those signs drops drastically in case of emergency situations like fire smoke, etc. and loss of visibility causes serious problems for safety evacuation. This paper propose a novel emergency light and exit sign built-in with Bluetooth Low Energy (BLE) Beacon to assist the emergency self-guiding evacuation using devices for crisis and emergency management to avoid panic condition inside the buildings. In this approach, the emergency light and exit sign with the BLE beacons deployed in the indoor environments and the smart devices detect their indoor positions, direction to move, and next exit sign position from beacon messages and interact with map server in the Internet / Intranet over the available LTE and/or Wi-Fi network connectivity. The map server generate an optimal emergency exit path according to the nearest emergency exit based on a novel graph generation method for less route computation for each smart device. All emergency exit path data interfaces among three system components, the emergency exit signs, map server, and smart devices, have been defined for modular implementation of our emergency evacuation system. The proposed exit sign experimental system has been deployed and evaluated in real-time building environment thoroughly and gives a good evidence that the modular design of the proposed exit sign system and a novel approach to compute emergency exit path route based on the BLE beacon message, map server, and smart devices is competitive and viable.

A Development of Fire Evacuation Simulation System Based 3D Modeling (3차원 공간 기반의 화재피난 시뮬레이션 시스템 개발)

  • Hwang, Yeon-Jung;Koo, Won-Yong;Hwang, Yen-Kyung;Youn, Ho-Ju
    • Fire Science and Engineering
    • /
    • v.25 no.6
    • /
    • pp.156-167
    • /
    • 2011
  • The number of buildings is growing at a rapid pace in Korea. It is driven by significant economic improvements, the rapid population growth and urban centralization. Such being this case, some city are underway to building enlargement, Manhattanization. To Solve these problem and ensure the safety of live, fire Evacuation Simulation system is used for safe check of buildings. Forecasting an egress behavior in building fire is so important in order to construct a safe and reliable environment. But, currently most of the fire evacuation simulation system used in practice are foreign software that is not reflect korean conditions. Thus, This study focus on objectives that develop a fire evacuation system considering Korean Characteristics and create 3D space-based topology. so the system calculate evacuation path. This system developed as a result of research can be used by architectural designer in practice due to it is based 3D spatial information modeling.

Flooding Area Estimation and Evacuation Path Analysis (침수취약지역 추정과 주민들의 대피경로 분석)

  • Park, Jong-Duk;Choi, Jin-Mu
    • Spatial Information Research
    • /
    • v.19 no.1
    • /
    • pp.1-11
    • /
    • 2011
  • Recently urban area has suffered from frequent flood event by local heavy rain. This study performed flood tests for the Jungnang river using HEC-RAS model. Based on 1m LiDAR data, river geometry data were produced using HEC-GeoRAS. For 100-year frequency flood, 200-year frequency flood, and PMF, flooding areas were estimated. Ten sub-zones of the entire flooding area were identified based on the nearest refugees and used to analyze evacuation paths to the refugees. The results showed that approximately 70% of flooded area were residential, commercial, and transportation areas so that much loss of life and property could be possible. Path analysis showed that the shortest path distances to refugees were about 1000m average. Evacuation warning given at a proper period could minimize loss of life and property. This study provides the guideline for flood evacuation plan in urban area.

Naval Ship Evacuation Path Search Using Deep Learning (딥러닝을 이용한 함정 대피 경로 탐색)

  • Ju-hun, Park;Won-sun, Ruy;In-seok, Lee;Won-cheol, Choi
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.59 no.6
    • /
    • pp.385-392
    • /
    • 2022
  • Naval ship could face a variety of threats in isolated seas. In particular, fires and flooding are defined as disasters that are very likely to cause irreparable damage to ships. These disasters have a very high risk of personal injury as well. Therefore, when a disaster occurs, it must be quickly suppressed, but if there are people in the disaster area, the protection of life must be given priority. In order to quickly evacuate the ship crew in case of a disaster, we would like to propose a plan to quickly explore the evacuation route even in urgent situations. Using commercial escape simulation software, we obtain the data for deep neural network learning with simulations according to aisle characteristics and the properties and number of evacuation person. Using the obtained data, the passage prediction model is trained with a deep learning, and the passage time is predicted through the learned model. Construct a numerical map of a naval ship and construct a distance matrix of the vessel using predicted passage time data. The distance matrix configured in one of the path search algorithms, the Dijkstra algorithm, is applied to explore the evacuation path of naval ship.

Ensuring the Evacuation Path Based on Inundation & Refuge Approach Vulnerability Analysis in Residential Buildings - Focused on Daegu Bukgu Inundation Case District - (침수 시 주거용 건축물에서 대피시설로의 접근 취약성 분석을 통한 피난경로 확보방안 - 대구시 북구 침수 사례지를 중심으로 -)

  • Lee, Ji-Soo;Hong, Won-Hwa;Kim, Gwang-Seob
    • Journal of the Korean housing association
    • /
    • v.23 no.5
    • /
    • pp.1-8
    • /
    • 2012
  • Recently, there have been frequent occurrence of the damage to lives and properties due to the torrential rain caused by climate change. In consideration of the current situations in which the underlying data related to flooding are lacking, this study conducted to build up the basic data on the flooded areas and suggested methods to secure the evacuation routes that can be accessible to evacuation facilities in the residential buildings. Methods of the study are as follows. First, We calculated the flood risk grades of residential buildings based on elevations, considering the flooding characteristics of the flooded areas in Buk-gu, Daegu. Second, We constructed baseline data on the evacuation routes through site investigation and reviewed of drawing using Arc GIS to identify vulnerability to access to the evacuation facilities, targeting the residential buildings. Third, We carried out the proximity analysis through a near analysis of analysis functions in ARC GIS. Forth, We deduced 115 residential buildings in which access to evacuation facilities is considered to be difficult based on the analysis results. Finally, We proposed extension of a blind alley as a means for achieving connectivity to evacuation facilities. And to evaluate the alternatives presented, we reconstructed route data. As a result, about 53% improvement was identified through the proximity analysis.