• Title/Summary/Keyword: Evacuated solar collector

Search Result 70, Processing Time 0.023 seconds

A Study on Thermal Performance of Heat Pipes with Different Condenser Shape for Evacuated Tubular Solar Collector (태양열 집열기용 히트파이프 응축부 형상 변화에 따른 열성능 연구)

  • Kwak, Hee-Youl;Joo, Hong-Jin
    • Journal of the Korean Solar Energy Society
    • /
    • v.28 no.2
    • /
    • pp.28-33
    • /
    • 2008
  • The purpose of this study was experimentally to investigate thermal performance of heat pipe for evacuated tubular solar collector. Two sets of evacuated tubular solar collector with different condenser shape of heat pipe were prepared. The experiments were performed under the same operating condition with an indoor testing apparatus. Also, the experiments were carried out various testing conditions including inclination, flow rate, and incident heat flux. The results of thermal performance of collector with enlarged condenser showed that $F_R({\tau}{\alpha})$ was 0.6572 and $F_RU_L$ was -2.0086 at $40^{\circ}$. And the results of thermal performance of collector with straight condenser showed that $F_R({\tau}{\alpha})$ was 0.6233 and $F_RU_L$ was -1.4996 at the same inclined angle.

An Experimental Study for Apply Solar System on Thermal Performance of Heat Pipe Type Solar Collector using a Glass Concentric Evacuated Tube in a Summer (하절기 태양열 시스템 적용을 위한 이중진공관 히트파이프형 집열기 열성능의 실험적 연구)

  • Kang, C.H.;Bae, C.H.;Hong, J.K.;Suh, J.S.
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1646-1651
    • /
    • 2004
  • This paper has been carried out to find the thermal efficiency and operating characteristics of heatpipe type solar collector using a glass concentric evacuated tube(CETC) during summer. In an experiment the flow rate of water in collector are 1.5l/min. Collector efficiency is $50{\sim}60%$ during time. The solar radiation appeared in a clear day is efficiency high. Efficiency curve fitted first order polynomial show that $F_{R}$$({\tau}{\alpha})$ and $F_{R}U_{L}$=1.316 is 0.601 and 1.316 respectively.

  • PDF

Study on Analysis and Evaluation of Performance for Evacuated Tubular Solar Collector System (진공관형 태양열 집열장치의 성능평가 및 해석 연구)

  • Chun, Tae-Kyu;Ahn, Young-Chull
    • Journal of Energy Engineering
    • /
    • v.22 no.2
    • /
    • pp.112-119
    • /
    • 2013
  • The thermal performance for test system with evacuated tubular solar collector is experimentally investigated to obtain the basis data for developing new type solar collector. For this purpose, the test system was designed using CATIA and then after being manufactured, the system was tested using evacuated tubular solar collector. Numerical analysis, furthermore, was performed using ANSYS Fluent V.13 for glass evacuated tubular solar collector. The results showed that as setting temperature difference(${\Delta}T$) of system was increased, total operating(working) time was almost same in all cases, even though operating count was decreased. The results of numerical analysis showed that as temperature of solar absorber in glass evacuated tubular solar collector was high, the drop-rate of temperature of center part was increased.

Optical analysis of low concentration evacuated tube solar collector

  • Teles, Mavd R.;Carvalho, Raquel;Ismail, Kamal A.R.
    • Advances in Energy Research
    • /
    • v.5 no.3
    • /
    • pp.227-237
    • /
    • 2017
  • The continuous increase of emission rates of green house gases and the effects on global warming added a new dimension to the problem of substituting the petroleum and its derivatives by environment friendly and sustainable energy sources for the world. Solar and wind energy appear at the top of the list of renewable of high potential, widely available, of dominated technology and well accepted. Brazil is one of the few countries in the world that receives number hours of sunshine exceeding 3,000 hours per year with a daily average of 4.5 to 6 kWh. However, this potential is largely unexplored and poorly tapped. The number of renewable systems implanted in Brazil has grown in recent years, but still insignificant when compared, for example, with Germany and Spain among others. This paper presents the results of an optical study on small concentration solar collector with evacuated tube enveloping the absorber and internal reflective surface fixed on the bottom part of the evacuated tube. The designed collector has a 2D geometrical concentration ratio between 2.455 and 4.91. The orientation of the solar collector, the ratio of the radius of the receiver to the radius of the absorber, the incidence angle for each period of the year, the collector inclination angle, the aperture angle of the reflective surface, concentration and optical efficiency were determined. The ray traces and flux distribution on the absorber of the evacuated tube solar collector were determined by using the program Ray Optics Simulation. The optical efficiency varies during the year according to the solar declination. For the periods were the solar declination is close to zero the efficiencies are maximum, and the variation during the day is around 25.88% and 99.9%. For the periods were the solar declination is maximum the efficiencies are minimum, and the variation during the day is around 23.78% and 91.79%.

Thermal Performance Study of Various Heat Pipe Working Fluid for Evacuated Tubular Solar Collector (단일 진공관형 집열기 히트파이프 작동유체에 따른 열성능 연구)

  • Joo, Hong-Jin;Kim, Jeong-Bae;Kim, Jong-Bo;Kwak, Hee-Youl
    • Journal of the Korean Solar Energy Society
    • /
    • v.27 no.4
    • /
    • pp.97-103
    • /
    • 2007
  • This study was carried out to compare the thermal performance and operating characteristics of evacuated tubular solar collector(ETSC) with different working fluid. The evacuated tubular solar collectors with different working fluid of heat pipe were investigated in the same operating condition for a indoor experiment equipment. First, the result of working fluid with Water showed that $F_R({\tau}{\alpha})$ was 0.6636 and $F_RU_L$ was -1.8457 Second, Ethanol showed that $F_R({\tau}{\alpha})$ was 0.6147 and $F_RU_L$ was -0.6365. Third, Flutec-pp9 showed that $F_R({\tau}{\alpha})$ was 0.515 and $F_RU_L$ was -3.2313. Finally MA's showed that $F_R({\tau}{\alpha})$ was 0.6572 and $F_RU_L$ was -2.0086.

A Study on the Annual Storage Efficiency of Concentric Evacuated Tube Solar Energy Collector System (이중진공관형 태양열 집열기의 연간 집열효율에 관한 연구)

  • Kim, Ki-Chul;Paeng, Jin-Gi;Yoon, Young-Hwan
    • Journal of the Korean Solar Energy Society
    • /
    • v.28 no.4
    • /
    • pp.50-55
    • /
    • 2008
  • The Storage efficiency of concentric evacuated tube solar collector is tested for one year from January 1st to December 31st under the real sun condition. The testing equipment is operated continuously for three days without cooling the storage tank. Daily storage efficiency is obtained from dividing stored energy in the storage tank by solar insolation on the solar collector for each day. Daily averaged temperature of the storage tank is lowest in January and highest in August. Monthly averaged storage efficiency is also lowest in November and highest in June. Therefore, it can be said that the storage temperature and the storage efficiency are roughly proportional to outdoor temperature. Furthermore, the daily storage efficiency is reversely proportional to $(T_s-T_a)/I_c$ where $T_s$ and $T_a$ are daily averaged storage temperature and outdoor temperature from sunrise to sunset, and $I_c$ is total insolation on the solar collector for a day.

Effects of Absorber Tube Shape and Operating Conditions on Thermal Performance of All-Glass Evacuated Tube Solar Collectors (이중 진공관형 태양열 집열기의 집열관 내부 형상과 운전 조건이 성능 변화에 미치는 영향)

  • Choi, Eun-Young;Kim, Yong;Seo, Tae-Beom
    • Journal of the Korean Solar Energy Society
    • /
    • v.25 no.1
    • /
    • pp.19-25
    • /
    • 2005
  • All-glass evacuated tube solar collectors consist of glass evacuated tubes and absorber tubes. Solar thermal energy from the sun is transferred to the working fluid through the glass evacuated tube and the absorber tube. Several collectors which have different absorber tubes are tested to find the effects of the absorber tube shapes and the operating conditions such as the incident heat flux and the flow rate. As the results, the efficiency of the collector which has a finned tube U tube is about $2{\sim}5%$ higher than that of the others in all cases on an average. And the collector has a finned U tube has the highest efficiency at the high flow rate and the low incident heat flux. In this condition, the outlet mean temperature is low and the heat loss becomes small. Also, it is known that the fin effect is greater than the shade effect.

Thermal Performance Analysis of Glass Evacuated Solar Collector with a Finned Tube (내관에 휜을 부착한 진공관형 집열기의 열성능 해석)

  • Kim, Yong;Seo, Tae-Beom;Kang, Yong-Hyuk
    • Journal of the Korean Solar Energy Society
    • /
    • v.24 no.1
    • /
    • pp.39-45
    • /
    • 2004
  • The thermal performance of glass evacuated tube solar collectors with finned tubes is numerically modelled with code and investigated to see the effect of toe inner tube diameter and incidence angle. The solar collector consists of a two-layered glass tube and an inner tube. Finned tubes are used as the inner tube of the collector in order to improve the performance of the solar collector. Two strip-type fins are attached on the opposite sides of the inner tube surface. The fin is wide enough to be tightly fatted inside the glass tube. The results show that if the incidence angle is small, the effect of the tube diameters is not significant on the thermal performance and the outlet air temperature. If the incidence angle is large, however, the outlet air temperature and the performance increases as the inner tube diameter increases.

A study on reducing temperature rise of twin-glass evacuated tube solar collector during summer time (이중진공관형 태양열 집열기의 하절기 과열 방지에 대한 연구)

  • Bai, Sang-Eun;Bai, Cheol-Ho;Nam, Hyun-Kyu;Shin, Ki-Yeol;Yoo, In-Ho
    • Journal of the Korean Solar Energy Society
    • /
    • v.33 no.3
    • /
    • pp.36-41
    • /
    • 2013
  • The reflection plate in twin-glass evacuated tube solar collector is controlled to reduce the overheat during the summer time. The sliding type and folding types are suggested and tested. The sliding type changes the plate angle and the folding type changes the opening angle of the reflection plate. By scattering the focus of the reflected radiation from the reflection plate, the temperature rise of the working fluid can be reduced. The sliding type shows the best results in overheat reduction. When solar radiation is 900 $W/m^2$, the temperature rise in one sliding type collector is reduced about $2^{\circ}C$ compared to that of the normal solar collector. When this method is applied to seven series-collectors in the field, the reduction of temperature rise during the summer time should be significant.

Comparison of the Thermal Performance with Stationary and Tracking Evacuated CPC Collectors (고정형과 추적형 Evacuated CPC 집열기의 열성능 비교)

  • Yun, Seong-Eun;Kim, Yong;Seo, Tae-Beom
    • Journal of the Korean Solar Energy Society
    • /
    • v.24 no.4
    • /
    • pp.19-25
    • /
    • 2004
  • A numerical study is performed to investigate the effect of sun tracking on the thermal performance of the evacuated compound parabolic concentrator (CPC) collectors. The evacuated CPC collectors consist of a two-layered glass tube, a copper tube and a reflector. The collector has a copper tube as an absorber and a reflector inside a glass tube. The water is used as a working fluid. The length and the diameter of the glass tube are 1,700mm and 70mm, respectively. The length and the diameter of the copper tube are 1,700mm and 25.4mm, respectively. Ray tracing analysis is carried out in order to compare absorbed heat fluxes on the absorber surface of the stationary and tracking collectors. The collected energy is calculated and compared with that on a fixed surface tilted at $35^{\circ}$ on the ground and facing south. The results indicate that the collected solar energy of the sun tracking system is significantly larger than that of a stationary collector. The sun tracking evacuated CPC collectors show a better performance with an increase in the thermal efficiency of up to 14% compared with an identical stationary collector.