• Title/Summary/Keyword: Euryarchaeota

Search Result 18, Processing Time 0.032 seconds

Microbial Community Composition in the Marine Sediments of Jeju Island: Next-Generation Sequencing Surveys

  • Choi, Heebok;Koh, Hyeon-Woo;Kim, Hongik;Chae, Jong-Chan;Park, Soo-Je
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.5
    • /
    • pp.883-890
    • /
    • 2016
  • Marine sediments are a microbial biosphere with an unknown physiology, and the sediments harbor numerous distinct phylogenetic lineages of Bacteria and Archaea that are at present uncultured. In this study, the structure of the archaeal and bacterial communities was investigated in the surface and subsurface sediments of Jeju Island using a next-generation sequencing method. The microbial communities in the surface sediments were distinct from those in the subsurface sediments; the relative abundance of sequences for Thaumarchaeota, Actinobacteria, Bacteroides, Alphaproteobacteria, and Gammaproteobacteria were higher in the surface than subsurface sediments, whereas the sequences for Euryarchaeota, Acidobacteria, Firmicutes, and Deltaproteobacteria were relatively more abundant in the subsurface than surface sediments. This study presents detailed characterization of the spatial distribution of benthic microbial communities of Jeju Island and provides fundamental information on the potential interactions mediated by microorganisms with the different biogeochemical cycles in coastal sediments.

Archaeal Diversity in Tidal Flat Sediment as Revealed by 16S rDNA Analysis

  • Kim Bong Soo;Oh Huyn Myung;Kan Ho Jeong;Chun Jong Sik
    • Journal of Microbiology
    • /
    • v.43 no.2
    • /
    • pp.144-151
    • /
    • 2005
  • During the past ten years, Archaea have been recognized as a widespread and significant component of marine picoplankton assemblages. More recently, the presence of novel archaeal phylogenetic lineages has been discovered in coastal marine environments, freshwater lakes, polar seas, and deep-sea hydrothermal vents. Therefore, we conducted an investigation into the archaeal community existing in tidal flat sediment collected from Ganghwa Island, Korea. Phylogenetic analysis of archaeal 16S rDNA amplified directly from tidal flat sediment DNA revealed the presence of two major lineages, belonging to the Crenarchaeota ($53.9\%$) and Euryarchaeota ($46.1\%$) phyla. A total of 102 clones were then sequenced and analyzed by comprehensive phylogenetic analysis. The sequences determined in our samples were found to be closely related to the sequences of clones which had been previously obtained from a variety of marine environments. Archaeal clones exhibited higher similarities ($83.25 - 100\%$) to sequences..from other environments in the public database than did those ($75.22 - 98.46\%$) of previously reported bacterial clones obtained from tidal flat sediment. The results of our study suggest that the archaeal community in tidal flat sediment is remarkably diverse.

Identification of the Nitrifying Archaeal Phylotype Carrying Specific amoA Gene by Applying Digital PCR (디지털 PCR을 응용한 특정 amoA유전자를 가진 질산화 Archaea 동정)

  • Park, Byoung-Jun;Park, Soo-Je;Rhee, Sung-Keun
    • Korean Journal of Microbiology
    • /
    • v.43 no.3
    • /
    • pp.232-235
    • /
    • 2007
  • Mesophilic Crenarchaeota have been known to be predominant among ammonia-oxidizing microorganisms in terrestrial and marine environments. In this study, we determined the archaeal phylotypes carrying specific amoA by combining digital PCR and multiplex-nested PCR. Analysis of samples in which amoA and 16S rRNA gene were amplified showed that amoA gene diversity was relatively higher than that of 16S rRNA gene. Nitrifying archaeal group I.1a was dominant over I.1b group of crenarchaota and euryarchaeota. This approach could be applied for interrelating a functional gene to a specific phylotype in natural environments.

Microbial Community Structure of the Active Layer Soil from Resolute, Canadian High Arctic

  • Kim, Ok-Sun;Kim, Hye Min;Lee, Hong Kum;Lee, Yoo Kyung
    • Journal of Climate Change Research
    • /
    • v.5 no.3
    • /
    • pp.249-256
    • /
    • 2014
  • Permafrost is frozen soil below $0^{\circ}C$ for two or more years. Surface of permafrost is called as active layer that seasonally thaws during the summer. Although the thawing of permafrost may deepen the active layer and consequently increase the microbial activity, the microbial community structure in this habitat has not yet been well described. In this study, we presented bacterial and archaeal diversity in the active layer soil from Resolute, Canada using pyrosequencing analysis. The soil sample was collected from the surface of the marsh covered with moss and Carex. A total of 7,796 bacterial reads for 40 phyla and 245 archaeal reads for 4 phyla were collected, reflecting the high diversity of bacteria. Predominant bacterial groups were Proteobacteria (37.7%) and Bacteroidetes (30.0%) in this study. Major groups in Archaea were Euryarchaeota (51.4%) and Thaumarchaeota (46.1%). Both methane producing archaea and consuming bacteria were detected in this study. Although it might be difficult to characterize microbial community with only one sample, it could be used for the basis of assessing the relative importance of the specific groups with a high resolution on the bacterial and archaeal community in this habitat.

Effects of alfalfa flavonoids extract on the microbial flora of dairy cow rumen

  • Zhan, Jinshun;Liu, Mingmei;Wu, Caixia;Su, Xiaoshuang;Zhan, Kang;Zhao, Guo qi
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.9
    • /
    • pp.1261-1269
    • /
    • 2017
  • Objective: The effect of flavonoids from alfalfa on the microbial flora was determined using molecular techniques of 16S ribosome deoxyribonucleic acid (rDNA) analysis. Methods: Four primiparous Holstein heifers fitted with ruminal cannulas were used in a $4{\times}4$ Latin square design and fed a total mixed ration to which alfalfa flavonoids extract (AFE) was added at the rates of 0 (A, control), 20 (B), 60 (C), or 100 (D) mg per kg of heifer BW. Results: The number of operational taxonomic units in heifers given higher levels of flavonoid extract (C and D) was higher than for the two other treatments. The Shannon, Ace, and Chao indices for treatment C were significantly higher than for the other treatments (p<0.05). The number of phyla and genera increased linearly with increasing dietary supplementation of AFE (p<0.05). The principal co-ordinates analysis plot showed substantial differences in the microbial flora for the four treatments. The microbial flora in treatment A was similar to that in B, C, and D were similar by the weighted analysis. The richness of Tenericutes at the phylum level tended to increase with increasing AFE (p = 0.10). The proportion of Euryarchaeota at the phylum level increased linearly, whereas the proportion of Fusobacteria decreased linearly with increasing AFE supplementation (p = 0.04). The percentage of Mogibacterium, Pyramidobacter, and Asteroleplasma at the genus level decreased linearly with increasing AFE (p<0.05). The abundance of Spirochaeta, Succinivibrio, and Suttonella at the genus level tended to decrease linearly with increasing AFE (0.05

Effects of cooling systems on physiological responses and intestinal microflora in early gestating sows exposed to high-temperature stress

  • Jeong, Yongdae;Choi, Yohan;Kim, Doowan;Min, Yejin;Cho, Eunsuk;Kim, Joeun
    • Journal of Animal Science and Technology
    • /
    • v.63 no.4
    • /
    • pp.904-918
    • /
    • 2021
  • This study was conducted to investigate the effect of cooling systems on reproductive performance, body temperature, blood metabolites, and the intestinal microbiome in early gestating sows exposed to high ambient temperature. In total, 39 pregnant sows (Landrace × Yorkshire; 2 parities) were randomly assigned to and maintained in the following three treatment groups (13 sows per group) over days 0 to 35 of pregnancy: (i) air cooling (AC; 26.87 ± 1.23℃), (ii) water-drip cooling (WC; 28.81 ± 0.91℃), and (iii) a lack of cooling with heat stress (HS; 30.72 ± 0.70℃). Backfat thickness was measured before and after HS. Feces were collected on day 0 and 35 d of the trial for microbiome analysis, whereas blood was taken at day 35 of pregnancy and analyzed. Reproductive performance and physiological responses were identified at day 35. Respiration rate along with rectal and skin temperatures were lower (p < 0.05) in the AC group than in the HS and WC groups. Serum blood urea nitrogen values were increased (p < 0.05) in the WC group compared with those measured in the AC and HS groups. Triiodothyronine was found at greater levels (p < 0.05) in the AC than in the HS group. Reproductive performance was not affected by the cooling systems. At the phylum level, fecal pathogenic Spirochaete and Euryarchaeota were found in higher numbers (p < 0.05) in all groups after HS. Similarly, at the genus level, the amount of Treponema was greater (p < 0.05) in all groups after HS. In conclusion, our results suggest that AC or WC can ameliorate or mitigate the adverse effects of HS on the physiological parameters of pregnant sows reared under high temperatures.

Microbial Community of the Arctic Soil from the Glacier Foreland of Midtre Lovénbreen in Svalbard by Metagenome Analysis (북극 스발바르 군도 중앙로벤 빙하 해안 지역의 토양 시료 내 메타지놈 기반 미생물 군집분석)

  • Seok, Yoon Ji;Song, Eun-Ji;Cha, In-Tae;Lee, Hyunjin;Roh, Seong Woon;Jung, Ji Young;Lee, Yoo Kyung;Nam, Young-Do;Seo, Myung-Ji
    • Microbiology and Biotechnology Letters
    • /
    • v.44 no.2
    • /
    • pp.171-179
    • /
    • 2016
  • Recent succession of soil microorganisms and vegetation has occurred in the glacier foreland, because of glacier thawing. In this study, whole microbial communities, including bacteria, archaea, and eukaryotes, from the glacier foreland of Midtre Lovénbreen in Svalbard were analyzed by metagenome sequencing, using the Ion Torrent Personal Genome Machine (PGM) platform. Soil samples were collected from two research sites (ML4 and ML7), with different exposure times, from the ice. A total of 2,798,108 and 1,691,859 reads were utilized for microbial community analysis based on the metagenomic sequences of ML4 and ML7, respectively. The relative abundance of microbial communities at the domain level showed a high proportion of bacteria (about 86−87%), whereas archaeal and eukaryotic communities were poorly represented by less than 1%. The remaining 12% of the sequences were found to be unclassified. Predominant bacterial groups included Proteobacteria (40.3% from ML4 and 43.3% from ML7) and Actinobacteria (22.9% and 24.9%). Major groups of Archaea included Euryarchaeota (84.4% and 81.1%), followed by Crenarchaeota (10.6% and 13.1%). In the case of eukaryotes, both ML4 and ML7 samples showed Ascomycota (33.8% and 45.0%) as the major group. These findings suggest that metagenome analysis using the Ion Torrent PGM platform could be suitably applied to analyze whole microbial community structures, providing a basis for assessing the relative importance of predominant groups of bacterial, archaeal, and eukaryotic microbial communities in the Arctic glacier foreland of Midtre Lovénbreen, with high resolution.

Phylogenetic Analysis of 680 Prokaryotes by Gene Content (유전자 보유 계통수를 이용한 원핵생물 680종의 분석)

  • Lee, Dong-Geun;Lee, Sang-Hyeon
    • Journal of Life Science
    • /
    • v.26 no.6
    • /
    • pp.711-720
    • /
    • 2016
  • To determine the degree of common genes and the phylogenetic relationships among genome-sequenced 680 prokaryotes, the similarities among 4,631 clusters of orthologous groups of protein (COGs)’ presence/ absence and gene content trees were analyzed. The number of COGs was in the range of 103–2,199 (mean 1377.1) among 680 prokaryotes. Candidatus Nasuia deltocephalinicola str. NAS-ALF, an obligate symbiont with insects, showed the minimum COG, while Pseudomonas aeruginosa PAO1, an opportunistic pathogen, represented the maximum COG. The similarities between two prokaryotes were 49.30–99.78 % (mean 72.65%). Methanocaldococcus jannaschii DSM 2661 (hyperthermophilic and autotrophic, Euryarchaeota phylum) and Mesorhizobium loti MAFF303099 (mesophilic and symbiotic, alpha-Proteobacteria class) had the minimum amount of similarities. As gene content may represent the potential for an organism to adapt to each habitat, this may represent the history of prokaryotic evolution or the range of prokaryotic habitats at present on earth. COG content trees represented the following. First, two members of Chloroflexi phylum (Dehalogenimonas lykanthroporepellens BL-DC-9 and Dehalococcoides mccartyi 195) showed a greater relationship with Archaea than other Eubacteria. Second, members of the same phylum or class in the 16S rRNA gene were separated in the COG content tree. Finally, delta- and epsilon-Proteobacteria were in different lineages with other Proteobacteria classes in neighbor-joining (NJ) and maximum likelihood (ML) trees. The results of this study would be valuable to identifying the origins of organisms, functional relationships, and useful genes.