Browse > Article
http://dx.doi.org/10.4014/jmb.1512.12036

Microbial Community Composition in the Marine Sediments of Jeju Island: Next-Generation Sequencing Surveys  

Choi, Heebok (Department of Architectural Engineering, Jeju National University)
Koh, Hyeon-Woo (Department of Biology, Jeju National University)
Kim, Hongik (R&D Division, VITABIO, Inc.)
Chae, Jong-Chan (Department of Biotechnology, Chonbuk National University)
Park, Soo-Je (Department of Biology, Jeju National University)
Publication Information
Journal of Microbiology and Biotechnology / v.26, no.5, 2016 , pp. 883-890 More about this Journal
Abstract
Marine sediments are a microbial biosphere with an unknown physiology, and the sediments harbor numerous distinct phylogenetic lineages of Bacteria and Archaea that are at present uncultured. In this study, the structure of the archaeal and bacterial communities was investigated in the surface and subsurface sediments of Jeju Island using a next-generation sequencing method. The microbial communities in the surface sediments were distinct from those in the subsurface sediments; the relative abundance of sequences for Thaumarchaeota, Actinobacteria, Bacteroides, Alphaproteobacteria, and Gammaproteobacteria were higher in the surface than subsurface sediments, whereas the sequences for Euryarchaeota, Acidobacteria, Firmicutes, and Deltaproteobacteria were relatively more abundant in the subsurface than surface sediments. This study presents detailed characterization of the spatial distribution of benthic microbial communities of Jeju Island and provides fundamental information on the potential interactions mediated by microorganisms with the different biogeochemical cycles in coastal sediments.
Keywords
Marine sediment; 16S rRNA gene; Archaea; Bacteria; Jeju Island;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Yamada T, Sekiguchi Y. 2009. Cultivation of uncultured Chloroflexi subphyla: significance and ecophysiology of formerly uncultured Chloroflexi ‘subphylum i’ with natural and biotechnological relevance. Microbes Environ. 24: 205-216.   DOI
2 Zierenberg RA, Adams MW, Arp AJ. 2000. Life in extreme environments: hydrothermal vents. Proc. Natl. Acad. Sci. USA 97: 12961-12962.   DOI
3 Barns SM, Cain EC, Sommerville L, Kuske CR. 2007. Acidobacteria phylum sequences in uranium-contaminated subsurface sediments greatly expand the known diversity within the phylum. Appl. Environ. Microbiol. 73: 3113-3116.   DOI
4 Blainey PC. 2013. The future is now: single-cell genomics of bacteria and archaea. FEMS Microbiol. Rev. 37: 407-427.   DOI
5 Castelle CJ, Wrighton KC, Thomas BC, Hug LA, Brown CT, Wilkins MJ, et al. 2015. Genomic expansion of domain archaea highlights roles for organisms from new phyla in anaerobic carbon cycling. Curr. Biol. 25: 690-701.   DOI
6 Cole JR, Chai B, Farris RJ, Wang Q, Kulam-Syed-Mohideen AS, McGarrell DM, et al. 2007. The ribosomal database project (RDP-II): introducing myRDP space and quality controlled public data. Nucleic Acids Res. 35: D169-D172.   DOI
7 Guy L, Ettema TJ. 2011. The archaeal 'TACK' superphylum and the origin of eukaryotes. Trends Microbiol. 19: 580-587.   DOI
8 Daims H, Nielsen JL, Nielsen PH, Schleifer KH, Wagner M. 2001. In situ characterization of Nitrospira-like nitrite-oxidizing bacteria active in wastewater treatment plants. Appl. Environ. Microbiol. 67: 5273-5284.   DOI
9 Felsenstein J. 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783-791.   DOI
10 Fujinami S, Takarada H, Kasai H, Sekine M, Omata S, Harada T, et al. 2013. Complete genome sequence of Ilumatobacter coccineum YM16-304T. Stand. Genomic Sci. 8: 430-440.   DOI
11 Hazen T, Jiménez L, López de Victoria G, Fliermans C. 1991. Comparison of bacteria from deep subsurface sediment and adjacent groundwater. Microbial Ecol. 22: 293-304.   DOI
12 Hugenholtz P, Pitulle C, Hershberger KL, Pace NR. 1998. Novel division level bacterial diversity in a Yellowstone hot spring. J. Bacteriol. 180: 366-376.
13 Katz L. 1997. Manipulation of modular polyketide synthases. Chem. Rev. 97: 2557-2576.   DOI
14 Kim JG, Park SJ, Quan ZX, Jung MY, Cha IT, Kim SJ, et al. 2014. Unveiling abundance and distribution of planktonic Bacteria and Archaea in a polynya in Amundsen Sea, Antarctica. Environ. Microbiol. 16: 1566-1578.   DOI
15 Kirchman DL. 2002. The ecology of Cytophaga-Flavobacteria in aquatic environments. FEMS Microbiol. Ecol. 39: 91-100.
16 Köpke B, Wilms R, Engelen B, Cypionka H, Sass H. 2005. Microbial diversity in coastal subsurface sediments: a cultivation approach using various electron acceptors and substrate gradients. Appl. Environ. Microbiol. 71: 7819-7830.   DOI
17 Mason OU, Hazen TC, Borglin S, Chain PS, Dubinsky EA, Fortney JL, et al. 2012. Metagenome, metatranscriptome and single-cell sequencing reveal microbial response to Deepwater Horizon oil spill. ISME J. 6: 1715-1727.   DOI
18 Lasken RS. 2012. Genomic sequencing of uncultured microorganisms from single cells. Nat. Rev. Microbiol. 10: 631-640.   DOI
19 Lasken RS, McLean JS. 2014. Recent advances in genomic DNA sequencing of microbial species from single cells. Nat. Rev. Genet. 15: 577-584.   DOI
20 Lim D-I. 2003. Geochemical compositions of coastal sediments around Jeju Island, south sea of Korea: potential provenance of sediment J. Kor. Earth Sci. Soc. 24: 337-345.
21 Mincer TJ, Church MJ, Taylor LT, Preston C, Karl DM, DeLong EF. 2007. Quantitative distribution of presumptive archaeal and bacterial nitrifiers in Monterey Bay and the North Pacific Subtropical Gyre. Environ. Microbiol. 9: 1162-1175.   DOI
22 Minz D, Fishbain S, Green SJ, Muyzer G, Cohen Y, Rittmann BE, Stahl DA. 1999. Unexpected population distribution in a microbial mat community: sulfate-reducing bacteria localized to the highly oxic chemocline in contrast to a eukaryotic preference for anoxia. Appl. Environ. Microbiol. 65: 4659-4665.
23 Naether A, Foesel BU, Naegele V, Wust PK, Weinert J, Bonkowski M, et al. 2012. Environmental factors affect acidobacterial communities below the subgroup level in grassland and forest soils. Appl. Environ. Microbiol. 78: 7398-7406.   DOI
24 Navarrete AA, Kuramae EE, de Hollander M, Pijl AS, van Veen JA, Tsai SM. 2013. Acidobacterial community responses to agricultural management of soybean in Amazon forest soils. FEMS Microbiol. Ecol. 83: 607-621.   DOI
25 Park BJ, Park SJ, Yoon DN, Schouten S, Sinninghe Damste JS, Rhee SK. 2010. Cultivation of autotrophic ammonia-oxidizing archaea from marine sediments in coculture with sulfur-oxidizing bacteria. Appl. Environ. Microbiol. 76: 7575-7587.   DOI
26 Orcutt BN, Sylvan JB, Knab NJ, Edwards KJ. 2011. Microbial ecology of the dark ocean above, at, and below the seafloor. Microbiol. Mol. Biol. Rev. 75: 361-422.   DOI
27 Orsi WD, Edgcomb VP, Christman GD, Biddle JF. 2013. Gene expression in the deep biosphere. Nature 499: 205-208.   DOI
28 Palatinszky M, Herbold C, Jehmlich N, Pogoda M, Han P, von Bergen M, et al. 2015. Cyanate as an energy source for nitrifiers. Nature 524: 105-108.   DOI
29 Park SJ, Kim J, Lee JS, Rhee SK, Kim H. 2014. Characterization of the fecal microbiome in different swine groups by high-throughput sequencing. Anaerobe 28: 157-162.   DOI
30 Park SJ, Park BJ, Jung MY, Kim SJ, Chae JC, Roh Y, et al. 2011. Influence of deglaciation on microbial communities in marine sediments off the coast of Svalbard, Arctic Circle. Microb. Ecol. 62: 537-548.   DOI
31 Park SJ, Park BJ, Rhee SK. 2008. Comparative analysis of archaeal 16S rRNA and amoA genes to estimate the abundance and diversity of ammonia-oxidizing archaea in marine sediments. Extremophiles 12: 605-615.   DOI
32 Parkes JR, Cragg AB, Wellsbury P. Recent studies on bacterial populations and processes in subseafloor sediments: a review. Hydrogeology J. 8: 11-28.   DOI
33 Parkes RJ, Cragg B, Roussel E, Webster G, Weightman A, Sass H. 2014. A review of prokaryotic populations and processes in sub-seafloor sediments, including biosphere:geosphere interactions. Marine Geol. 352: 409-425.   DOI
34 Santoro AE, Casciotti KL, Francis CA. 2010. Activity, abundance and diversity of nitrifying archaea and bacteria in the central California Current. Environ. Microbiol. 12: 1989-2006.   DOI
35 Pedros-Alio C. 2006. Marine microbial diversity: can it be determined? Trends Microbiol. 14: 257-263.   DOI
36 Purdy KJ, Cresswell-Maynard TD, Nedwell DB, McGenity TJ, Grant WD, Timmis KN, Embley TM. 2004. Isolation of haloarchaea that grow at low salinities. Environ. Microbiol. 6: 591-595.   DOI
37 Purdy KJ, Nedwell DB, Martin Embley T, Takii S. 2001. Use of 16S rRNA-targeted oligonucleotide probes to investigate the distribution of sulphate-reducing bacteria in estuarine sediments. FEMS Microbiol. Ecol. 36: 165-168.   DOI
38 Schloss PD, Gevers D, Westcott SL. 2011. Reducing the effects of PCR amplification and sequencing artifacts on 16S rRNA-based studies. PLoS One 6: e27310.   DOI
39 Spang A, Martijn J, Saw JH, Lind AE, Guy L, Ettema TJ. 2013. Close encounters of the third domain: the emerging genomic view of archaeal diversity and evolution. Archaea 2013: 202358.   DOI
40 Spang A, Saw JH, Jorgensen SL, Zaremba-Niedzwiedzka K, Martijn J, Lind AE, et al. 2015. Complex archaea that bridge the gap between prokaryotes and eukaryotes. Nature 521: 173-179.   DOI
41 Stahl DA, de la Torre JR. 2012. Physiology and diversity of ammonia-oxidizing archaea. Annu. Rev. Microbiol. 66: 83-101.   DOI
42 Stein R. 1991. Accumulation of Organic Carbon in Marine Sediments. Springer, New York.
43 Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. 2013. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol. Biol. Evol. 30: 2725-2729.   DOI
44 Thauer RK, Kaster AK, Seedorf H, Buckel W, Hedderich R. 2008. Methanogenic archaea: ecologically relevant differences in energy conservation. Nat. Rev. Microbiol. 6: 579-591.   DOI
45 Teske A, Alm E, Regan JM, Toze S, Rittmann BE, Stahl DA. 1994. Evolutionary relationships among ammonia- and nitrite-oxidizing bacteria. J. Bacteriol. 176: 6623-6630.   DOI
46 Teske A, Sorensen KB. 2008. Uncultured archaea in deep marine subsurface sediments: have we caught them all? ISME J. 2: 3-18.   DOI
47 Teske AP. 2006. Microbial community composition in deep marine subsurface sediments of ODP Leg 201: sequencing surveys and cultivations, pp. 1-19. In Jørgensen BB, D'Hondt SL, Miller DJ (eds.). Proc. ODP, Sci. Results. Texas A&M University, Ocean Drilling Program, College Station, TX, USA.
48 Valentine DL. 2007. Adaptations to energy stress dictate the ecology and evolution of the Archaea. Nat. Rev. Microbiol. 5: 316-323.   DOI
49 Walsh DA, Papke RT, Doolittle WF. 2005. Archaeal diversity along a soil salinity gradient prone to disturbance. Environ. Microbiol. 7: 1655-1666.   DOI
50 Wang Y, Sheng HF, He Y, Wu JY, Jiang YX, Tam NF, Zhou HW. 2012. Comparison of the levels of bacterial diversity in freshwater, intertidal wetland, and marine sediments by using millions of illumina tags. Appl. Environ. Microbiol. 78: 8264-8271.   DOI
51 Whitman WB, Coleman DC, Wiebe WJ. 1998. Prokaryotes: the unseen majority. Proc. Natl. Acad. Sci. USA 95: 6578-6583.   DOI
52 Woo KS, Sohn YK, Ahn US, Yoon SH, Spate A. 2013. Geology of Jeju Island, pp. 13-14. Jeju Island Geopark - A Volcanic Wonder of Korea. Springer, Berlin-Heidelberg.