• Title/Summary/Keyword: Eurocodes

Search Result 22, Processing Time 0.021 seconds

Eurocode 4: A modern code for the design of composite structures

  • Stark, Jan
    • Steel and Composite Structures
    • /
    • v.5 no.4
    • /
    • pp.327-343
    • /
    • 2005
  • The European Standards Organisation (CEN) has planned to develop a complete set of harmonized European building standards. The Eurocodes, being the design standards, form part of this total system of European standards, together with standards for fabrication and erection and product standards. After a period of experimental use of the ENV(European Pre Standard)-versions of the Eurocodes, these are now converted into official EN's (European Standards). Design of composite steel and concrete buildings and bridges is covered by Eurocode 4. An overview will be given of the historic development of Eurocode 4, the structure and contents of the EN version and the present status and planning for completion. The Eurocode treatment of some selected technical items will be presented in more detail.

On the steel cost of circular flat-bottomed silos designed using the Eurocodes

  • Gonzalez-Montellano, Carlos;Ramirez, Alvaro;Gallego, Eutiquio;Ayuga, Francisco
    • Structural Engineering and Mechanics
    • /
    • v.33 no.5
    • /
    • pp.561-572
    • /
    • 2009
  • Nowadays, Eurocodes have become the reference standards for silo design within the European Union. They include new procedures for load assessment and structural verifications aiming to design safer silos. However, many silo manufacturers are still reluctant to use them (or at least all their prescriptions) because of the loss of competitiveness they are experiencing in comparison with former standards. This paper shows how steel cost of flat-bottomed circular silos varies when different silo geometries and stored materials are considered. The influence of critical structural verifications on steel costs, such as buckling of the silo wall, were also analyzed and some conclusions and practical recommendations for silo designers were proposed.

A new model for transient heat transfer model on external steel elements

  • Chica, J.A.;Morente, F.
    • Steel and Composite Structures
    • /
    • v.8 no.3
    • /
    • pp.201-216
    • /
    • 2008
  • The Eurocode system provides limited information regarding the structural fire design of external steel structures. Eurocode 1 provides thermal action for external member but only in steady-state conditions. On the other hand, Eurocode 3 provides a methodology to determine heat transfer to external steelwork, but there is no distinction in cross section shapes and, in addition, the calculated temperature distribution is assumed to be uniform in the cross section. This paper presents the results of a research carried out to develop a new transient heat transfer model for external steel elements to improve the current approach of the Eurocodes. This research was carried out as part of the project EXFIRE "Development of design rules for the fire behaviour of external steel structures", funded by the European Research Programme of the Research Fund for Coal and Steel (RFCS).

Reliability analysis of the nonlinear behaviour of stainless steel cover-plate joints

  • Averseng, Julien;Bouchair, Abdelhamid;Chateauneuf, Alaa
    • Steel and Composite Structures
    • /
    • v.25 no.1
    • /
    • pp.45-55
    • /
    • 2017
  • Stainless steel exhibits high ductility and strain hardening capacity in comparison with carbon steel widely used in constructions. To analyze the particular behaviour of stainless steel cover-plate joints, an experimental study was conducted. It showed large ductility and complex failure modes of the joints. A non-linear finite element model was developed to predict the main parameters influencing the behaviour of these joints. The results of this deterministic model allow us to built a meta-model by using the quadratic response surface method, in order to allow for efficient reliability analysis. This analysis is then applied to the assessment of design formulae in the currently used codes of practice. The reliability analysis has shown that the stainless steel joint design according to Eurocodes leads to much lower failure probabilities than the Eurocodes target reliability for carbon steel, which incites revising the resisting model evaluation and consequently reducing stainless steel joint costs. This approach can be used as a basis to evaluate a wide range of steel joints involving complex failure modes, particularly bearing failure.

Plastic load bearing capacity of multispan composite highway bridges with longitudinally stiffened webs

  • Unterweger, Harald;Lechner, Andreas;Greiner, Richard
    • Steel and Composite Structures
    • /
    • v.11 no.1
    • /
    • pp.1-19
    • /
    • 2011
  • The introduction of the Eurocodes makes plastic design criteria available also for composite bridges, leading to more economical solutions compared with previous elastic design rules. Particularly for refurbishment old bridges with higher actual traffic loads, up to date outside the scope of the Eurocodes, strengthening should therefore be avoidable or at least be necessary only to a minor extent. For bridges with smaller spans and compact cross sections, the plastic load bearing capacity is clearly justified. In this work, however, the focus is placed on long span continuous composite bridges with deep, longitudinally stiffened girders, susceptible to local buckling. In a first step, the elastic - plastic cross section capacity of the main girder in bending is studied as an isolated case, based on high preloads acting on the steel girder only, due to the common assembling procedure without scaffolding. In a second step, the effects on the whole structure are studied, because utilising the plastic section capacity at midspan leads to a redistribution of internal forces to the supports. Based on the comprehensive study of an old, actual strengthened composite bridge, some limitations for plastic design are identified. Moreover, fully plastic design will sometimes need additional global analysis. Practical recommendations are given for design purposes.

prEN 1991-1-4:2021: the draft Second Generation Eurocode on wind actions on structures - A personal view

  • Francesco Ricciardelli
    • Wind and Structures
    • /
    • v.37 no.2
    • /
    • pp.79-94
    • /
    • 2023
  • This paper traces the drafting of the new EN 1991-1-4 Eurocode 1 - Actions on structures - Part 1-4: General actions - Wind actions within Mandate M/515 of the European Commission to CEN, for the evolution of structural Eurocodes towards their Second Generation. Work of the Project Team started in August 2017 and ended in April 2020, with delivery of a final draft for public enquiry. The revised document contains several modifications with respect to the existing 2005 version, and new sections were added, covering aspect not dealt with in the previous version. It has a renovated structure, with a main text limited in size and containing only fundamental material; all the remaining information, either normative or informative is arranged into thirteen annexes. Common to other Eurocode Parts, general requests from CEN were those of reducing the number of Nationally Determined Parameters and of enhancing the ease of use. More specific requests were those of (a) the drafting of a European design wind map, (b) improving wind models, (c) reviewing force and pressure coefficients, (d) reviewing the procedures for evaluation of the dynamic response, as well as (e) making editorial improvements aimed at a more user friendly document. The author had the privilege to serve as Project Team member for the drafting of the new document, and this paper brings his personal view concerning some general aspects of wind code writing, and some more specific aspects about the particular document.

Limit states design for tunnels: related researches and present state of application (터널 한계상태설계법 관련 연구 및 적용 동향)

  • Kim, Hong-Moon;Kim, Dong-Kook;Lee, Sang-Duk
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.16 no.3
    • /
    • pp.341-346
    • /
    • 2014
  • The representative Limit State Design(LSD) codes, AASHTO LRFD and Eurocodes, are widely being applied when designing civil structures. However, these codes are only applying tunnel lining design and segments design for shield tunnels. Recently in Europe, the Eurocode 7 committee was trying to create a research group called EG12, but they reluctantly decided not to create EG12 since it could have an impact on some of the other Eurocodes(including Eerocodes 2 and 3). Still there is an effort to continue researching LSD for tunnelling. LSD method will become the norm for the field of civil structural design in the near future. Therefore, it is important to fully understand Eurocode7:Geotechnical design in connection with Eurocode 2 and Eurocode 3. In addition, it is essential to follow international research trends and also to research for application to tunnelling.

Calculated external pressure coefficients on livestock buildings and comparison with Eurocode 1

  • Kateris, D.L.;Fragos, V.P.;Kotsopoulos, T.A.;Martzopoulou, A.G.;Moshou, D.
    • Wind and Structures
    • /
    • v.15 no.6
    • /
    • pp.481-494
    • /
    • 2012
  • The greenhouse type metal structures are increasingly used in modern construction of livestock farms because they are less laborious to construct and they provide a more favorable microclimate for the growth of animals compared to conventional livestock structures. A key stress factor for metal structures is the wind. The external pressure coefficient ($c_{pe}$) is used for the calculation of the wind effect on the structures. A high pressure coefficient value leads to an increase of the construction weight and subsequently to an increase in the construction cost. The EC1 in conjunction with EN 13031-1:2001, which is specialized for greenhouses, gives values for this coefficient. This value must satisfy two requirements: the safety of the structure and a reduced construction cost. In this paper, the Navier - Stokes and continuity equations are solved numerically with the finite element method (Galerkin Method) in order to simulate the two dimensional, incompressible, viscous air flow over the vaulted roofs of single span and twin-span with eaves livestock greenhouses' structures, with a height of 4.5 meters and with length of span of 9.6 and 14 m. The simulation was carried out in a wind tunnel. The numerical results of pressure coefficients, as well as, the distribution of them are presented and compared with data from Eurocodes for wind actions (EC1, EN 13031-1:2001). The results of the numerical experiment were close to the values given by the Eurocodes mainly on the leeward area of the roof while on the windward area a further segmentation is suggested.

The significance of removing shear walls in existing low-rise RC frame buildings - Sustainable approach

  • Keihani, Reza;Bahadori-Jahromi, Ali;Goodchild, Charles
    • Structural Engineering and Mechanics
    • /
    • v.71 no.5
    • /
    • pp.563-576
    • /
    • 2019
  • According to The Concrete Centre, in the UK shear walls have become an inseparable part of almost every reinforced concrete frame building. Recently, the construction industry has questioned the need for shear walls in low to mid-rise RC frame buildings. This study tried to address the issue in two stages: The first stage, the feasibility of removing shear walls in an existing design for a residential building where ETABS and CONCEPT software were used to investigate the structural performance and cost-effectiveness respectively. The second stage, the same structure was examined in various locations in the UK to investigate regional effects. This study demonstrated that the building without shear wall could provide adequate serviceability and strength within the safe range defined by Eurocodes. As a result, construction time, overall cost and required concrete volume are reduced which in turn enhance the sustainability of concrete construction.