• Title/Summary/Keyword: Eurocode 2

Search Result 151, Processing Time 0.026 seconds

Structural Behaviour of TEC-BEAM Connection with Steel Column Under Cyclic Loading (반복하중을 받는 TEC-BEAM 철골브라켓 접합부 거동평가)

  • Ju, Young Kyu;Kim, Ji Young;Kim, Myeong Han;Jung, Kwang Ryang;Kim, Sang Dae
    • Journal of Korean Society of Steel Construction
    • /
    • v.14 no.1
    • /
    • pp.51-58
    • /
    • 2002
  • To reduce the story height for high-rise buildings, the TEC Beam is developed as a new composite beam composed of structural tee, precast concrete, stirrup, and site-in-cast reinforced concrete slab. The preliminary test of the proposed system was performed for simple beams and it showed a good behavior. However, for the field application of the system, it is required to develope a steel moment resisting connection using steel brackets on which upper rebars of the TEC BEAM are anchored. In this paper, three types of the proposed system are experimentally investigated. The parameters of the test are as follows: (1) the spacing of transverse bars, (2) the ratio of width of rebar's layer to bracket length. Specimens were classified as semi-rigid full strength by the Eurocode 4. It could be concluded that the proposed moment resisting system shows a good structural behavior and may be applicable in the filed.

Comparison of Design Strands for Safety Factor of Offshore Wind Turbine Foundation (해상 풍력발전기 기초의 안전율에 관한 설계기준 분석 연구)

  • Jang, Hwa Sup;Kim, Ho Sun;Lee, Kyoung Woo;Kim, Mann Eung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.2B
    • /
    • pp.149-152
    • /
    • 2012
  • This study is carried out to analyze the design method and safety rate degree for IEC 61400-3, DNV-OS-J101, GL Wind, EUROCODE, AASHTO and domestic design standard used for offshore wind turbine foundation design. The findings will provide a design parameter for domestic offshore wind turbine foundation design. The design of the steel Support Structure of an offshore wind turbine can be based on either the Allowable Stress Design(ASD) approach or the Load and Resistance Factor Design(LRFD) approach. The design principles with the use of LRFD method are described with various limit states. A limit state is a condition beyond which a structure or part of a structure exceeds a specified design requirement. Design by the LRFD method is a design method by which the target component safety level is obtained by applying load and resistance factors to characteristic reference values of loads (load effects)and structural resistance. When the strength design of the steel Support Structure is based on the ASD approach, the design acceptance criteria are to be expressed in terms of appropriate basic allowable stresses in accordance with the requirements specified. After comparison an economics domestic offshore wind turbine foundation standard will be developed.

Comparison of Shear Strength Equation for Flat Plates with GFRP Plate (GFRP 판으로 보강된 플랫 플레이트의 전단강도식에 관한 규준의 비교 분석)

  • Kim, Min Sook;Hwang, Seung Yeon;Kim, Heecheul;Lee, Young Hak
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.4
    • /
    • pp.247-254
    • /
    • 2014
  • In this study, shear test performed to investigate the shear behavior of flat plate that reinforced by embedded GFRP(glass fiber reinforced polymer) plate with openings. Shape of the GFRP shear reinforcement is a plate with several openings to ensure perfect integration with concrete. The test parameters include the distance between the column face and the first line of GFRP plate and number of GFRP plate vertical strip. The result of test showed that when number of GFRP plate vertical strip was increased, shear strength improved. The shear strength for flat plate reinforced GFRP plate in various codes including ACI 318, BS 8110, EUROCODE 2, and KCI were compared to provide more rational approach for reinforced concrete flat plates with GFRP plate.

Numerical Analysis of Inelastic Lateral Torsional Buckling Strength of HSB800 Steel Plate Girder with Monosymmetric Section (일축대칭단면 HSB800 강재 플레이트거더의 비탄성 횡비틂좌굴강도의 해석적 평가)

  • Park, Yong Myung;Lee, Kun Joon;Choi, Byung Ho;Hwang, Min O
    • Journal of Korean Society of Steel Construction
    • /
    • v.25 no.2
    • /
    • pp.153-164
    • /
    • 2013
  • In this paper, lateral-torsional buckling(LTB) strength of HSB800 high strength steel plate girder with monosymmetric section under uniform moment was evaluated by nonlinear analysis. The unbraced length in inelastic LTB range was considered for the sections whose smaller or larger flange is in compression with slender, noncompact and compact web. Analyses of SM490 steel girders were first performed with the single-panel and three-panel model to judge the validity of the constructed models by comparing those results with Eurocode 3, AASHTO and AISC codes. By using the same models, LTB strength of HSB800 girder was evaluated and it was found that the sections whose smaller flange is in compression with noncompact flange-slender/noncompact web could not reach the flexural strength of the design codes.

Numerical Analysis of Inelastic Lateral Torsional Buckling Strength of HSB800 Steel Plate Girders with Doubly Symmetric Section (이축대칭단면 HSB800 강재 플레이트거더의 비탄성 횡비틂좌굴강도의 해석적 평가)

  • Park, Yong Myung;Lee, Kun Joon;Choi, Byung Ho;Hwang, Min O
    • Journal of Korean Society of Steel Construction
    • /
    • v.25 no.2
    • /
    • pp.141-151
    • /
    • 2013
  • In this paper, lateral-torsional buckling(LTB) strength of HSB800 steel plate girder under uniform bending moment was estimated by the nonlinear analysis. Doubly symmetric sections with slender, noncompact and compact webs were considered and the LTB strength in the inelastic range was estimated by taking initial imperfection and residual stress into account. For the numerical analysis, single-panel model and three-panel model were considered and analysis of SM490 steel plate girder was performed to judge the validity of the constructed models by comparing the results with AASHTO, AISC, Eurocode and KHBDC(LSD) codes. By using the same models, LTB strength of HSB800 girder was evaluated and it was acknowledged that the current codes can be applied to HSB800 girders with doubly symmetric section in the inelastic LTB range.

Design models for predicting the resistance of headed studs in profiled sheeting

  • Vigneri, Valentino;Hicks, Stephen J.;Taras, Andreas;Odenbreit, Christoph
    • Steel and Composite Structures
    • /
    • v.42 no.5
    • /
    • pp.633-647
    • /
    • 2022
  • This paper presents the results from reliability analyses of the current Eurocode 4 (EN 1994-1-1) and AISC 360-16 design models for predicting the resistance of headed stud shear connectors within profiled steel sheeting, when the ribs are oriented transverse to the supporting beam. For comparison purposes, the performance of the alternative "Luxembourg" and "Stuttgart" model were also considered. From an initial database of 611 push-out tests, 269 cases were included in the study, which ensured that the results were valid over a wide range of geometrical and material properties. It was found that the current EN 1994-1-1 design rules deliver a corrected partial safety factor γM* of around 2.0, which is significantly higher than the target value 1.25. Moreover, 179 tests fell within the domain of the concrete-related failure design equation. Notwithstanding this, the EN 1994-1-1 equations provide satisfactory results for re-entrant profiled sheeting. The AISC 360-16 design equation for steel failure covers 263 of the tests in the database and delivers 𝛾M*≈2.0. Conversely, whilst the alternative "Stuttgart" model provides an improvement over the current codes, only a corrected partial safety factor of 𝛾M*=1.47 is achieved. Finally, the alternative "Luxembourg" design model was found to deliver the required target value, with a corrected partial safety factor 𝛾M* between 1.21 and 1.28. Given the fact that the Luxembourg design model is the only model that achieved the target values required by EN 1990, it is recommended as a potential candidate for inclusion within the second generation of Eurocodes.

Ultimate Resisting Capacity of Axially Loaded Circular Concrete-Filled Steel Tube Columns (축력이 재하된 원형 콘크리트 충전강관 기둥의 최대 저항능력)

  • Kwak, Hyo-Gyoung;Kwak, Ji-Hyun
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.4
    • /
    • pp.423-433
    • /
    • 2012
  • The axial load on the concrete-filled steel tube (CFT) column produces confinement stress, which enhances strength of the core concrete. The amount of strength increase in concrete depends on the magnitude of produced confinement stress. From nonlinear analyses, the ultimate resisting capacity of the CFT columns subjected to axial loads was calculated. Nonlinear material properties such as Poisson's ratio and stress-strain relation were considered in the suggested model, and the maximum confining stress was obtained by multi axial yield criteria of the steel tube. This proposed model was verified by comparing the analytical results with experimental results. Then, regression analyses were conducted to predict the maximum confining stress according to D/t ratio and material properties without rigorous structural analysis. To ensure the validity of the suggested regression formula, various empirical formulas and Eurocode4 design code were compared.

An experimental study on the Behaviour of Concrete-Filled Square Steel Tubular Column·H-Beam End-plate Connections with Penetrated HT-Bolts (관통형 고력볼트를 사용한 엔드플레이트형식 콘크리트 충전 각형강관 기둥-H형강 보 접합부의 거동에 관한 실험적연구)

  • Kim, Jae Keon;Lee, Myong Jae;Lee, Seung Joon;Moon, Tae Sup
    • Journal of Korean Society of Steel Construction
    • /
    • v.10 no.2 s.35
    • /
    • pp.211-219
    • /
    • 1998
  • The objective of this study is to investigate the structural behavior of Concrete-Filled Tubular Column H-Beam End-Plate Connections with Penetrated HT-Bolts under monotonic load. Simple bending tests are carried out with 5 kinds of specimens including beam specimen. The parameters of these tests are the thickness (T=22, 26. 30mm) of End-plates and the diameter (M=20, 22mm) of bolts. From the tests, the increasing values of yielding strength and initial stiffness of each specimen were gained as the thickness of End-plates and diameter of bolts are increasing. And the application of Bjorhovde et al and Eurocode 3 classification method by non-dimensional moment-rotation curves to the connections showed that all of them are included in rigid region as far as initial stiffness is concerned and all of them are also rigid as far as ultimate strength.

  • PDF

Experiment of Flexural Behavior of Composite Beam with Steel Fiber Reinforced Ultra High Performance Concrete Deck and Inverted-T Steel Girder (강섬유로 보강된 초고성능 콘크리트 바닥판과 역T형 강거더 합성보의 휨거동 실험)

  • Yoo, Sung-Won;Ahn, Young-Sun;Cha, Yeong-Dal;Joh, Chang-Bin
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.6
    • /
    • pp.761-769
    • /
    • 2014
  • Ultra high performance concrete (UHPC) has been developed to overcome the low strengths and brittleness of conventional concrete. Considering that UHPC, owing to its composition and the use of steel fibers, develops a compressive strength of 180 MPa as well as high stiffness, the top flange of the steel girder may be superfluous in the composite beam combining a slab made of UHPC and the steel girder. In such composite beam, the steel girder takes the form of an inverted-T shaped structure without top flange in which the studs needed for the composition of the steel girder with the UHPC slab are disposed in the web of the steel girder. This study investigates experimentally and analytically the flexural behavior of this new type of composite beam to propose details like stud spacing and slab thickness for further design recommendations. To that goal, eight composite beams with varying stud spacing and slab thickness were fabricated and tested. The test results indicated that stud spacing running from 100 mm to 2 to 3 times the slab thickness can be recommended. In view of the relative characteristic slip limit of Eurocode-4, the results showed that the composite beam developed ductile behavior. Moreover, except for the members with thin slab and large stud spacing, most of the specimens exhibited results different to those predicted by AASHTO LRFD and Eurocode-4 because of the high performance developed by UHPC.

Automated design of optimum longitudinal reinforcement for flexural and axial loading

  • Tomas, Antonio;Alarcon, Antonio
    • Computers and Concrete
    • /
    • v.10 no.2
    • /
    • pp.149-171
    • /
    • 2012
  • The problem of a concrete cross section under flexural and axial loading is indeterminate due to the existence of more unknowns than equations. Among the infinite solutions, it is possible to find the optimum, which is that of minimum reinforcement that satisfies certain design constraints (section ductility, minimum reinforcement area, etc.). This article proposes the automation of the optimum reinforcement calculation under any combination of flexural and axial loading. The procedure has been implemented in a program code that is attached in the Appendix. Conventional-strength or high-strength concrete may be chosen, minimum reinforcement area may be considered (it being possible to choose between the standards ACI 318 or Eurocode 2), and the neutral axis depth may be constrained in order to guarantee a certain sectional ductility. Some numerical examples are presented, drawing comparisons between the results obtained by ACI 318, EC 2 and the conventional method.