• Title/Summary/Keyword: Eurocode

Search Result 356, Processing Time 0.029 seconds

Analysis of rigid and semi-rigid steel-concrete composite joints under monotonic loading - Part II: Parametric study and comparison with the Eurocode 4 proposal

  • Amadio, C.;Fragiacomo, M.
    • Steel and Composite Structures
    • /
    • v.3 no.5
    • /
    • pp.371-382
    • /
    • 2003
  • This paper analyses the response of rigid and semi-rigid steel-concrete composite joints under monotonic loading. The influence of some important parameters, such as the presence of column web stiffening and the mechanical properties of component materials, is investigated by using a three-dimensional finite element modelling based on the Abaqus code. Numerical and experimental responses of different types of composite joints are also compared with the analytical results obtained using the component approach proposed by Eurocode 4. The results obtained with this approach generally fit well with the numerical and experimental values in terms of strength. Conversely, some significant limits arise when evaluating initial stiffness and non-linear behaviour of the composite joint.

Determination of Design Parameters from Ground Investigation Results -Focus on geotechnical characteristic values- (지반조사결과에서 설계변수의 결정문제 -지반특성치 산정을 중심으로-)

  • Yoon, Gil-Lim;Yoon, Yeo-Won;Kim, Hong-Yeon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.126-133
    • /
    • 2008
  • Geotechnical limit state design methods; LRFD of North America is an approach that estimates resistance using design model and then multiplies resistance factor by calculated resistance to reflect the uncertainty of geomaterials and design models; whereas, Eurocode of the Europe employs the partial resistance factor applied directly to each variable in the resistance equation that individual soil properties such as cohesion and angle of internal friction are applied. This discussion paper is a study on characteristic value which has globally been argued through processing of development of Eurocode 7 for geotechnical design even to the present. Estimating the characteristic value of soil properties affects not only determination of design value applied directly to design of geotechnical structures, but also economic feasibility and stability of the structures.

  • PDF

Experimental and analytical behaviour of composite slabs

  • Lopes, Emanuel;Simoes, Rui
    • Steel and Composite Structures
    • /
    • v.8 no.5
    • /
    • pp.361-388
    • /
    • 2008
  • The Eurocode 4 presents some negative aspects in the design of composite slabs by the m-k Method or the Partial Connection Method. On one hand, the component chemical adherence is not accounted for in the connection between the profiled steel sheet and the concrete. On the other hand, the application of these methods requires some fitting parameters that must be determined by full scale tests. In this paper, the Eurocode 4 methods are compared with a method developed at the Federal Polytechnic School of Lausanne, based on pullout tests, which can be a valid alternative. Hence, in order to calculate the necessary parameters for the three methods, several tests have been performed such as the full scale test described in Eurocode 4 and pull-out tests. This last type of tests is of small dimensions and implicates lower costs. Finally, a full-scale test of a steel-concrete composite slab with a generic loading is presented, with the goal of verifying the analytical formulation.

Evaluation of RC Building Structures Designed According to Eurocode 8 (Eurocode 8에 의해 설계도니 건축물의 평가)

  • 이한선
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1999.10a
    • /
    • pp.297-304
    • /
    • 1999
  • the devastating earthquake which occurred in Turkey on August 187, 1999, reminds again us the necessity of the preparedness for the earthquake hazard. the level of earthquake engineering in Koran is still low due to the short period of the research and development in this field. Therefore the most efficient way of promoting our technology in this field is considered to collect the information on the state of the art and practice developed in the advanced countries in earthquake engineering and to analyze the advantages and disadvantages and then reflect these to the new seismic codes. for this purpose this study reviews the concept and main characteristics of Eurocode 8 and the findings of many researches that have been performed for the improvement of EC8. Finally the seismic performance evaluation of the building structures designed according to EC8. and the relevant recommendations are summarized.

  • PDF

Study on International Code of Practice for Pile Foundation (말뚝기초의 국제적 설계기준에 관한 고찰)

  • 윤길림;권오순;차재선
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.07a
    • /
    • pp.35-52
    • /
    • 1999
  • This paper addresses on new codes of practice, limit state design; load resistance factored design and Eurocode 7, which have recently been adopted by foundation engineers in North America and European Communities. A brief description of the limit state design concepts and some introductions to Australia and Sweden national code for pile foundation are made on behalf of pile capacity determination. Also, simple closed form solution for rational resistance factor when resistance is log-normally distributed, has been derived for pile foundation.

  • PDF

Selecting and scaling ground motion time histories according to Eurocode 8 and ASCE 7-05

  • Ergun, Mustafa;Ates, Sevket
    • Earthquakes and Structures
    • /
    • v.5 no.2
    • /
    • pp.129-142
    • /
    • 2013
  • Linear and nonlinear time history analyses have been becoming more common in seismic analysis and design of structures with advances in computer technology and earthquake engineering. One of the most important issues for such analyses is the selection of appropriate acceleration time histories and matching these histories to a code design acceleration spectrum. In literature, there are three sources of acceleration time histories: artificial records, synthetic records obtained from seismological models and accelerograms recorded in real earthquakes. Because of the increase of the number of strong ground motion database, using and scaling real earthquake records for seismic analysis has been becoming one of the most popular research issues in earthquake engineering. In general, two methods are used for scaling actual earthquake records: scaling in time domain and frequency domain. The objective of this study is twofold: the first is to discuss and summarize basic methodologies and criteria for selecting and scaling ground motion time histories. The second is to analyze scaling results of time domain method according to ASCE 7-05 and Eurocode 8 (1998-1:2004) criteria. Differences between time domain method and frequency domain method are mentioned briefly. The time domain scaling procedure is utilized to scale the available real records obtained from near fault motions and far fault motions to match the proposed elastic design acceleration spectrum given in the Eurocode 8. Why the time domain method is preferred in this study is stated. The best fitted ground motion time histories are selected and these histories are analyzed according to Eurocode 8 (1998-1:2004) and ASCE 7-05 criteria. Also, characteristics of both near fault ground motions and far fault ground motions are presented by the help of figures. Hence, we can compare the effects of near fault ground motions on structures with far fault ground motions' effects.

Compressive Stress Distribution of Concrete for Performance-Based Design Code (성능 중심 설계기준을 위한 콘크리트 압축응력 분포)

  • Lee, Jae-Hoon;Lim, Kang-Sup;Hwang, Do-Kyu
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.3
    • /
    • pp.365-376
    • /
    • 2011
  • The current Concrete Structural Design Code (2007) prescribe the equivalent rectangular stress block of the ACI 318 Building Code as concrete compressive stress distribution for design of concrete structures. The rectangular stress block may be enough for flexural strength calculation, but realistic stress-strain relationship is required for performance verification at selected limit state in performance-based design. Moreover, the ACI rectangular stress block provides non-conservative flexural strength for high strength concrete columns. Therefore a new stress distribution model is required for development of performance-based design code. This paper proposes a concrete compressive stress-strain distribution model for design and performance verification. The proposed model has a parabolic-rectangular shape, which is adopted by Eurocode 2 and Japanese Code (JSCE). It was developed by investigation of experimental test results conducted by the authors and other researchers. The test results cover high strength concrete as well as normal strength concrete. The stress distribution parameters of the proposed models are compared to those of the ACI 318 Building Code, Eurocode 2, Japanese Code (JSCE) and Canadian Code (CSA) as well as the test results.

Experimental and analytical investigation of composite columns made of high strength steel and high strength concrete

  • Lai, Binglin;Liew, J.Y. Richard;Xiong, Mingxiang
    • Steel and Composite Structures
    • /
    • v.33 no.1
    • /
    • pp.67-79
    • /
    • 2019
  • Composite columns made of high strength materials have been used in high-rise construction owing to its excellent structural performance resulting in smaller cross-sectional sizes. However, due to the limited understanding of its structural response, current design codes do not allow the use of high strength materials beyond a certain strength limit. This paper reports additional test data, analytical and numerical studies leading to a new design method to predict the ultimate resistance of composite columns made of high strength steel and high strength concrete. Based on previous study on high strength concrete filled steel tubular members and ongoing work on high strength concrete encased steel columns, this paper provides new findings and presents the feasibility of using high strength steel and high strength concrete for general double symmetric composite columns. A nonlinear finite element model has been developed to capture the composite beam-column behavior. The Eurocode 4 approach of designing composite columns is examined by comparing the test data with results obtained from code's predictions and finite element analysis, from which the validities of the concrete confinement effect and plastic design method are discussed. Eurocode 4 method is found to overestimate the resistance of concrete encased composite columns when ultra-high strength steel is used. Finally, a strain compatibility method is proposed as a modification of existing Eurocode 4 method to give reasonable prediction of the ultimate strength of concrete encased beam-columns with steel strength up to 900 MPa and concrete strength up to 100 MPa.

Torsional effects due to concrete strength variability in existing buildings

  • De Stefano, M.;Tanganelli, M.;Viti, S.
    • Earthquakes and Structures
    • /
    • v.8 no.2
    • /
    • pp.379-399
    • /
    • 2015
  • Existing building structures can easily present material mechanical properties which can largely vary even within a single structure. The current European Technical Code, Eurocode 8, does not provide specific instructions to account for high variability in mechanical properties. As a consequence of the high strength variability, at the occurrence of seismic events, the structure may evidence unexpected phenomena, like torsional effects, with larger experienced deformations and, in turn, with reduced seismic performance. This work is focused on the torsional effects related to the irregular stiffness and strength distribution due to the concrete strength variability. The analysis has been performed on a case-study, i.e., a 3D RC framed 4 storey building. A Normal distribution, compatible to a large available database, has been taken to represent the concrete strength domain. Different plan layouts, representative of realistic stiffness distributions, have been considered, and a statistical analysis has been performed on the induced torsional effects. The obtained results have been compared to the standard analysis as provided by Eurocode 8 for existing buildings, showing that the Eurocode 8 provisions, despite not allowing explicitly for material strength variability, are conservative as regards the estimation of structural demand.