• Title/Summary/Keyword: Eulerian-eulerian

Search Result 519, Processing Time 0.025 seconds

Investigation of structural responses of breakwaters for green water based on fluid-structure interaction analysis

  • Lee, Chi-Seung;Heo, Haeng-Sung;Kim, Young-Nam;Kim, Myung-Hyun;Kim, Sang-Hyun;Lee, Jae-Myung
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.4 no.2
    • /
    • pp.83-95
    • /
    • 2012
  • In the present study, the structural response of breakwaters installed on container carriers against green water impact loads was numerically investigated on the basis of the fluid-structure interaction analysis. A series of numerical studies is carried out to induce breakwater collapse under such conditions, whereby a widely accepted fluid-structure interaction analysis technique is adopted to realistically consider the phenomenon of green water impact loads. In addition, the structural behaviour of these breakwaters under green water impact loads is investigated simultaneously throughout the transient analysis. A verification study of the numerical results is performed using data from actual collapse incidents of breakwaters on container carriers. On the basis of the results of a series of numerical analyses, the pressure distribution of green water was accurately predicted with respect to wave mass and velocity. It is expected that the proposed analytical methodology and predicted pressure distribution could be used as a practical guideline for the design of breakwaters on container carriers.

Numerical and experimental study on the impact between a free falling wedge and water

  • Dong, Chuanrui;Sun, Shili;Song, Hexing;Wang, Qiang
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.1
    • /
    • pp.233-243
    • /
    • 2019
  • In this paper, numerical and experimental studies are performed to investigate the liquid impact on a free falling wedge. In the numerical simulation, the structure is assumed to be rigid and the elastic response is ignored. The fully nonlinear coupling between wedge and water is considered by an auxiliary function method based on the Boundary Element Method (BEM). At the intersection of the wedge surface and liquid surface, two coincident nodes are used to decouple the boundary conditions. The Eulerian free surface conditions in the local coordinate system are adopted to update the deformed free surface. In the experiments, five pressure sensors are fixed on each side of the wedge which is released from an experimental installation. Steel and aluminum wedges that have different structural elasticity are used in the experiments to investigate the influence of structural elasticity on the impact force. Numerical results are compared with experimental data and they agree very well. The influence of fluid gravity, body mass, initial entry speed and deadrise angle on the impact pressure are further investigated.

Impact of the Thruster Jet Flow of Ultra-large Container Ships on the Stability of Quay Walls

  • Hwang, Taegeon;Yeom, Gyeong-Seon;Seo, Minjang;Lee, Changmin;Lee, Woo-Dong
    • Journal of Ocean Engineering and Technology
    • /
    • v.35 no.6
    • /
    • pp.403-413
    • /
    • 2021
  • As the size of ships increases, the size and output power of their thrusters also increase. When a large ship berths or unberths, the jet flow produced from its thruster has an adverse effect on the stability of quay walls. In this study, we conducted a numerical analysis to examine the impact of the thruster jet flow of a 30,000 TEU container ship, which is expected to be built in the near future, on the stability of a quay wall. In the numerical simulation, we used the fluid-structure interaction analysis technique of LS-DYNA, which is calculated by the overlapping capability using an arbitrary Lagrangian Eulerian formulation and Euler-Lagrange coupling algorithm with an explicit finite element method. As the ship approached the quay wall and the vertical position of the thruster approached the mound of the quay wall, the jet flow directly affected the foot-protection blocks and armor stones. The movement and separation of the foot-protection blocks and armor stones were confirmed in the area affected directly by the thruster jet flow of the container ship. Therefore, the thruster jet flows of ultra-large ships must be considered when planning and designing ports. In addition, the stability of existing port structures must be evaluated.

Thermal post-buckling behavior of GPLRMF cylindrical shells with initial geometrical imperfection

  • Yi-Wen Zhang;Gui-Lin She;Lei-Lei Gan;Yin-Ping Li
    • Geomechanics and Engineering
    • /
    • v.32 no.6
    • /
    • pp.615-625
    • /
    • 2023
  • Initial geometrical imperfection is an important factor affecting the structural characteristics of plate and shell structures. Studying the effect of geometrical imperfection on the structural characteristics of cylindrical shell is beneficial to explore the thermal post-buckling response characteristics of cylindrical shell. Therefore, we devote to investigating the thermal post-buckling behavior of graphene platelets reinforced mental foam (GPLRMF) cylindrical shells with geometrical imperfection. The properties of GPLRMF material with considering three types of graphene platelets (GPLs) distribution patterns are introduced firstly. Subsequently, based on Donnell nonlinear shell theory, the governing equations of cylindrical shell are derived according to Eulerian-Lagrange equations. Taking into account two different boundary conditions namely simply supported (S-S) and clamped supported (C-S), the Galerkin principle is used to solve the governing equations. Finally, the impact of initial geometrical imperfections, the GPLs distribution types, the porosity distribution types, the porosity coefficient as well as the GPLs mass fraction on the thermal post-buckling response of the cylindrical shells are analyzed.

DECOMPOSITION FORMULAS AND INTEGRAL REPRESENTATIONS FOR THE KAMPÉ DE FÉRIET FUNCTION F0:3;32:0;0 [x, y]

  • Choi, Junesang;Turaev, Mamasali
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.23 no.4
    • /
    • pp.679-689
    • /
    • 2010
  • By developing and using certain operators like those initiated by Burchnall-Chaundy, the authors aim at investigating several decomposition formulas associated with the $Kamp{\acute{e}}$ de $F{\acute{e}}riet$ function $F_{2:0;0}^{0:3;3}$ [x, y]. For this purpose, many operator identities involving inverse pairs of symbolic operators are constructed. By employing their decomposition formulas, they also present a new group of integral representations of Eulerian type for the $Kamp{\acute{e}}$ de $F{\acute{e}}riet$ function $F_{2:0;0}^{0:3;3}$ [x, y], some of which include several hypergeometric functions such as $_2F_1$, $_3F_2$, an Appell function $F_3$, and the $Kamp{\acute{e}}$ de $F{\acute{e}}riet$ functions $F_{2:0;0}^{0:3;3}$ and $F_{1:0;1}^{0:2;3}$.

Analysis on load-bearing contact characteristics of face gear tooth surface wear with installation errors

  • Fan Zhang;Xian-long Peng
    • Computers and Concrete
    • /
    • v.31 no.2
    • /
    • pp.163-171
    • /
    • 2023
  • Face gear transmission is widely used in aerospace shunt-confluence transmission system. Tooth wear is one of the main factors affecting its bearing transmission performance. Furthermore, the installation errors of face gear are inevitable. In order to study the wear mechanism of face gear tooth surface with installation errors, based on tooth contact analysis numerical method and Archard wear theory, the UMESHMOTION subroutine in ABAQUS is developed.Combining with Arbitrary Lagrangian-Eulerian adaptive mesh technology, the finite element mesh wear model of abraded face gear pair is established.The preprocessing conditions are set to generate the inp files.Then,the inp files for each corner are imported and batch processed in ABAQUS.The loading tooth contact problem at each rotation angle is solved and the load distribution coefficient among gear tooth, tooth root bending stress, tooth surface contact stress and loaded transmission error are obtained. Results show that the tooth root wear is the most serious and the wear at the pitch cone is close to 0.The wear law of tooth surface along tooth width direction is convex parabola and the wear law along tooth height direction is concave parabola.

CFD procedure of Multi-phase flow to predict the trend of Boil-off for the various filling ratio of C-Type liquefied hydrogen tank subject to sloshing motion (슬로싱에 놓인 C-Type 액화수소 탱크의 적재율에 따른 BOG 발생량 경향 예측을 위한 다상 유동 CFD 해석 절차)

  • Jin-Ho Lee;Sung-Je Lee;Se-Yun Hwang;Jang Hyun Lee
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2022.06a
    • /
    • pp.213-213
    • /
    • 2022
  • 본 논문은 슬로싱(Sloshing) 거동에 놓인 극저온 액체수소 화물창의 BOG 예측을 위한 CFD 해석 절차를 다루고 있다. 특히, 적재율(Filling Ratio)에 따라 달라지는 열 유입과 그에 따른 액체수소의 기화 경향을 파악하기 위한 목적으로 수행되었다. 액체수소와 기체수소의 혼재에 의한 다상 열유동(Multiphase-Thermal flow) 특성을 반영하고 유동에 따른 강제 대류 현상을 열유속에 반영하기 위한 CFD 해석을 수행하였다. 다상 유동 모델의 정확성을 검증하기 위하여 슬로싱 실험의 압력 계측 값과 해석의 압력 값 및 자유수면(Free surface) 형상을 비교하였다. 소형 C-Type 독립형 액화수소 탱크를 대상으로 슬로싱 유동과 BOG 발생을 수치적으로 예측하였다. 해석 과정에서 VOF(Volume of fraction) 모델과 Eulerian 모델을 모두 적용하여, 액체수소에 유입되는 열 유속(Heat flux)의 예측 정확성을 비교하였다. 슬로싱 유무에 따라 액체수소에 유입되는 열 유속을 비교하여 슬로싱 유동의 포함 여부에 따른 BOG 발생량의 변화를 제시하였으며, 최종적으로 액체수소의 충전율(Filling ratio) 별로 BOG 발생량의 경향성을 제시하였다.

  • PDF

Fluid Simulations in Academy Awarded Movies (아카데미상 영화에서 유체 시뮬레이션 기술)

  • Kim, Myung-Gyu;Oh, Seung-Taik;Choi, Byoung-Tae
    • Journal of the Korea Computer Graphics Society
    • /
    • v.14 no.3
    • /
    • pp.19-30
    • /
    • 2008
  • Fluid simulation for computer graphics is a field of generating the realistic movements of water, smoke, fire, explosion, sand and related phenomena to be used in motion pictures and video games. In this paper we review the fluid simulation technologies and present a trend analysis for the simulation methods used in the recent movies. First of all, for this purpose, the two methods that are most widely used for fluid simulation are explained as well as their technical issues. These two methods are classified into Eulerian grid-based and Lagrangian particle-based approaches. Next, focusing on the achievements of the scientists and engineers that the 2008 Sci-Tech Oscar Awards are given to, the features of their fluid simulation technologies are analyzed. Finally, we anticipate that there are and will be the needs for visualizing fluid interaction with rigid and soft bodies and topological change among solid, fluid and gas, creating digital creatures based on fluid simulation and presenting interaction between creature and fluid.

  • PDF

INVESTIGATION ON MECHANICAL AND BIO-MECHANICAL PERFORMANCE OF A CENTRIFUGAL BLOOD PUMP (혈액 펌프의 기계적 성능과 생체 역학적 성능에 대한 연구)

  • Chang, M.;Moshfeghi, M.;Hur, N.;Kang, S.;Kim, W.;Kang, S.H.
    • Journal of computational fluids engineering
    • /
    • v.20 no.2
    • /
    • pp.88-95
    • /
    • 2015
  • Blood pump analysis process includes both mechanical and bio-mechanical aspects. Since a blood pump is a mechanical device, it has to be mechanically efficient. On the other hand, blood pumps function is sensitively related to the blood recirculation; hence, bio-factors such as hemolysis and thrombosis become important. This paper numerically investigates the mechanical and bio-mechanical performances of the Rotaflow in the extracorporeal membrane oxygenation(ECMO), Ventricular Assist Device(VAD), and full-load conditions. The operational conditions are defined as(400[mmHg], 5[L/min.]), (100[mmHg], 3[L/min.]), and (600[mmHg], 10[L/min.]) for ECMO, VAD, and full-load conditions, respectively. The results are presented and analyzed from the mechanical aspect via performance curves, and from bio-mechanical aspect via focusing on hemolytic characteristics. Regions of top and bottom cavities show recirculation in both ECMO and VAD condtions. In addition, Eulerian-based calculation of modified index of hemolysis(MIH) has been investigated. The results demonstrate that the VAD condition has the least risk of hemolysis among the others, while the full-load condition has the highest risk.

A Study on Application of Teaching-Learning Program based on Constructivist Views for Mathematically gifted Students in Primary School (초등 영재 교육에서의 구성주의 교수.학습 모형 적용 연구 - 알고리즘 문제를 중심으로 -)

  • Choi, Keun-Bae;Kim, Hong-Seon
    • Communications of Mathematical Education
    • /
    • v.21 no.2 s.30
    • /
    • pp.153-176
    • /
    • 2007
  • The purpose of this paper is to analyze teaching-learning program which can be applied to mathematically gifted students in primary school, Our program is based on constructivist views on teaching and learning of mathematics. Mainly, we study the algorithmic thinking of mathematically gifted students in primary school in connection with the network problems; Eulerian graph problem, the minimum connector problem, and the shortest path problem, The above 3-subjects are not familiar with primary school mathematics, so that we adapt teaching-learning model based on the social constructivism. To achieve the purpose of this study, seventeen students in primary school participated in the study, and video type(observation) and student's mathematical note were used for collecting data while the students studied. The results of our study were summarized as follows: First, network problems based on teaching-learning model of constructivist views help students learn the algorithmic thinking. Second, the teaching-learning model based on constructivist views gives an opportunity of various mathematical thinking experience. Finally, the teaching-learning model based on constructivist views needs more the ability of teacher's research and the time of teaching for students than an ordinary teaching-learning model.

  • PDF