• Title/Summary/Keyword: Eulerian-eulerian

Search Result 523, Processing Time 0.03 seconds

TRANSIENT SIMULATION OF SOLID PARTICLE DISTRIBUTION WITH VARIOUS DESIGN PARAMETERS OF THE BAFFLE IN A STIRRED TANK (배플 형상에 따른 교반기 내부 고체입자 분포의 비정상상태 해석)

  • Kim, Chi-Gyeom;Lee, Seung-Jae;Won, Chan-Shik;Hur, Nahm-Keon
    • Journal of computational fluids engineering
    • /
    • v.14 no.4
    • /
    • pp.1-6
    • /
    • 2009
  • In the present study, numerical simulations were performed in a stirred solid/liquid system by using Eulerian multi-phase model. The transient flow field of liquid and distribution of solid particles were predicted in the stirred tank with pitched paddle impeller and baffles. The Frozen rotor method is adopted to consider the rotating motion of the impeller. The effects of number and width of baffles on the mixing time and the quality of solid suspension in the stirred tank are presented numerically. The result shows that the mixing time decreases as the width and number of baffles increase. The present numerical methodology can be applied to optimizing mixing condition of industrial mixer.

The Effect of Extended Collision Model on a Spray (확장 충돌 모델이 분무계산에 미치는 영향)

  • 한진희;조상무;박권하
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.26 no.2
    • /
    • pp.181-191
    • /
    • 2002
  • Spray calculation has been studied to understand the behavior of the spray in a combustion chamber But the spray dispersion has not been predicted properly in a high velocity injection spray or a wall impaction spray. In this study the extended grazing collision model is applied to improve the problem. The gas phase is modelled by the Eulerian continuum conservation equations of mass, momentum, energy and fuel vapour fraction. The liquid phase is modelled following the discrete droplet model approach in Lagrangian form. The droplet distributions, penetration, width and gas flows are compared for the cases with or without extended model. The extended collision model makes the results better.

A Sloshing Analysis of Storage Tank using Multi-layer Perceptron Artificial Neural Network (다층퍼셉트론 인공신경망을 이용한 저장탱크 슬로싱해석)

  • Kim, Hyun-Soo;Lee, Young-Shin
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.491-496
    • /
    • 2004
  • The oscillation of the fluid caused by external forces is called sloshing, which occurs in moving vehicles with contained liquid masses, such as aircraft. cars and liquid rocket and so on. This sloshing effect could be a severe problem in vehicle stability and control. So, various baffles are used in order to reduce the sloshing. The Lagrangian, Eulerian and ALE numerical method is widely used on the analysis of sloshing presently. But, these numerical methods are needed so many CPU time. In this study, for the reduction of the sloshing analysis time, me multi.layer perceptron artificial neural network is introduced and analysis results are presented.

  • PDF

Numerical Investigation of Hemodynamics in a Bileaflet Mechanical Heart Valve using an Implicit FSI Based on the ALE Approach

  • Hong, Tae-Hyub;Choi, Choeng-Ryul;Kim, Chang-Nyung
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2410-2414
    • /
    • 2008
  • Human heart valves diseased by congenital heart defects, rheumatic fever, bacterial infection, cancer may cause stenosis or insufficiency in the valves. Treatment may be with medication but often involves valve repair or replacement (insertion of an artificial heart valve). Bileaflet mechanical heart valves (BMHVs) are widely implanted to replace the diseased heart valves, but still suffer from complications such as hemolysis, platelet activation, tissue overgrowth and device failure. These complications are closely related to both flow characteristics through the valves and leaflet dynamics. In this study, the physiological flow interacting with the moving leaflets in a bileaflet mechanical heart valve (BMHV) is simulated with a strongly coupled implicit fluid-structure interaction (FSI) method which is newly organized based on the Arbitrary-Lagrangian-Eulerian (ALE) approach and the dynamic mesh method (remeshing) in FLUENT. The simulated results are in good agreement with previous experimental studies. This study shows the applicability of the present FSI model to the complicated physics interacting between fluid flow and moving boundary.

  • PDF

Experimental and Numerical Study on the Air-assist Atomizer Spray Droplets (2유체 분무 액적의 거동에 관한 실험 및 수치 해석적 연구)

  • Kim, D.I.;Oh, S.H.
    • Journal of ILASS-Korea
    • /
    • v.3 no.4
    • /
    • pp.65-76
    • /
    • 1998
  • An experimental and numerical study of a spray flow is performed to investigate the spray characteristics using an air-assisted atomizer. A Partical Dynamic Analyzer(PDA) is used to measure SMD, dmp velocity, and drop number density whose the initial conditions have considerable effect on the numerical results. The measured experimental data have been used to asses the accuracy of model predictions. Numerical investigation is made with the Eulerian - Lagrangian formulism. Turbulent dispersion effects using a Monte-Carlo method, turbulent modulation effect and entrainment of air are also numerically simulated. Results show that the numerical predictions of SSF(Stochastic Separated Flow) analysis yielded reasonable agreement with the experimental data. However, the model calculations for small drops produced the inconsistent numerical results due to the effect of surrounding air entrainment.

  • PDF

Flood Impact Pressure Analysis of Vertical Wall Structures using PLIC-VOF Method with Lagrangian Advection Algorithm

  • Phan, Hoang-Nam;Lee, Jee-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.23 no.6
    • /
    • pp.675-682
    • /
    • 2010
  • The flood impact pressure acting on a vertical wall resulting from a dam-breaking problem is simulated using a navier-Stokes(N-S) solver. The N-S solver uses Eulerian Finite Volume Method(FVM) along with Volume Of Fluid(VOF) method for 2-D incompressible free surface flows. A Split Lagrangian Advection(SLA) scheme for VOF method is implemented in this paper. The SLA scheme is developed based on an algorithm of Piecewise Linear Interface Calculation(PLIC). The coupling between the continuity and momentum equations is affected by using a well-known Semi-Implicit Method for Pressure-Linked Equations (SIMPLE) algorithm. Several two-dimensional numerical simulations of the dam-breaking problem are presented to validate the accuracy and demonstrate the capability of the present algorithm. The significance of the time step and grid resolution are also discussed. The computational results are compared with experimental data and with computations by other numerical methods. The results showed a favorable agreement of water impact pressure as well as the global fluid motion.

A MULTI-DIMENSIONAL MAGNETOHYDRODYNAMIC CODE IN CYLINDRICAL GEOMETRY

  • Ryu, Dong-Su;Yun, Hong-Sik;Choe, Seung-Urn
    • Journal of The Korean Astronomical Society
    • /
    • v.28 no.2
    • /
    • pp.223-243
    • /
    • 1995
  • We describe the implementation of a multi-dimensional numerical code to solve the equations for idea! magnetohydrodynamics (MHD) in cylindrical geometry. It is based on an explicit finite difference scheme on an Eulerian grid, called the Total Variation Diminishing (TVD) scheme, which is a second-order-accurate extension of the Roe-type upwind scheme. Multiple spatial dimensions are treated through a Strang-type operator splitting. Curvature and source terms are included in a way to insure the formal accuracy of the code to be second order. The constraint of a divergence-free magnetic field is enforced exactly by adding a correction, which involves solving a Poisson equation. The Fourier Analysis and Cyclic Reduction (FACR) method is employed to solve it. Results from a set of tests show that the code handles flows in cylindrical geometry successfully and resolves strong shocks within two to four computational cells. The advantages and limitations of the code are discussed.

  • PDF

A Numerical Study on Particle Deposition onto a Heated Semiconductor Wafer in Vacuum Environment (진공 환경에서 가열되는 반도체 웨이퍼로의 입자 침착에 관한 수치해석적 연구)

  • Park, Su-Bin;Yoo, Kyung-Hoon;Lee, Kun-Hyung
    • Particle and aerosol research
    • /
    • v.14 no.2
    • /
    • pp.41-47
    • /
    • 2018
  • Numerical analysis was conducted to characterize particle deposition onto a heated horizontal semiconductor wafer in vacuum environment. In order to calculate the properties of gas surrounding the wafer, the gas was assumed to obey the ideal gas law. Particle transport mechanisms considered in the present study were convection, Brownian diffusion, gravitational settling and thermophoresis. Averaged particle deposition velocities on the upper surface of the wafer were calculated with respect to particle size, based on the numerical results from the particle concentration equation in the Eulerian frame of reference. The deposition velocities were obtained for system pressures of 1000 Pa~1 atm, wafer heating of 0~5 K and particle sizes of $2{\sim}10^4nm$. The present numerical results showed good agreement with the available experimental ones.

Numerical Analysis of Two-Phase Aluminum Dust Combustion according to Single Aluminum Particle Combustion Model (단일 알루미늄 입자 연소 모델에 따른 2상 알루미늄 분말 연소장 시뮬레이션)

  • Kim, Sang-Min;Yang, Hee-Sung;Yoon, Woong-Sup
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.05a
    • /
    • pp.460-466
    • /
    • 2010
  • 단일 알루미늄의 연소 모델을 사용하여 알루미늄 분말의 점화 과정에 대한 전산유체 해석 기법을 개발하였다. 유동의 계산은 Reynolds averaged Navier-Stokes식을 사용하였으며, $k-{\epsilon}$ 난류모델을 적용하였다. 입자는 Eulerian-Lagrangian 방법을 사용하여 유동과 독립적으로 계산을 수행하였으며 상용 전산유체해석 프로그램인 Fluent 6.3을 사용하여 해석을 수행하였다. 단일 모델에서 사용한 대류 및 복사 열전달, 표면이상반응, 알루미늄의 용융열을 입자 가열원으로 고려하였다. 같은 조건을 사용하여 단일 입자 모델 계산과 전산유체해석을 수행하였으며, 두 결과는 5% 이내로 잘 일치 하였다. 이를 통해 전산유체해석에서 알루미늄의 점화를 모사할 수 있음을 확인하였다.

  • PDF

Two-phase flow and heat transfer characteristics in a submerged gas injection system (잠겨진 가스분사장치에서의 2상 유동 및 열전달 특성)

  • 최청렬;김창녕
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.6
    • /
    • pp.824-834
    • /
    • 1999
  • Characteristics of two-phase flow and heat transfer were numerically investigated in a submerged gas injection system when temperature of the injected gas was different from that of the liquid. The Eulerian approach was used for both the continuous and dispersed phases. The turbulence in the liquid phase was modeled using the standard $k-\varepsilon$$\varepsilon$ turbulence model. The interphase friction and heat transfer coefficient were calculated from the correlations available in the literature. The turbulent dispersion of the phases was modeled by a "dispersion Prandtl number". In the case with heat transfer where the temperature of the injected gas is higher than the mean liquid temperature, the axial and the radial velocities are lower in comparison with the case of homogeneous temperatures. The results in the present research are of interest in the design and operation of a wide variety of material and chemical processes.

  • PDF