• Title/Summary/Keyword: Euler-Bernoulli beam

Search Result 425, Processing Time 0.027 seconds

Dynamic Behavior of a Simply Supported Fluid Flow Pipe with a Crack (크랙을 가진 유체유동 파이프의 동특성 해석)

  • 유진석;손인수;윤한익
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.689-694
    • /
    • 2003
  • An iterative modal analysis approach is developed to determine the effect of transverse open cracks on the dynamic behavior of simply supported pipe conveying fluid subject to the moving mass. The equation of motion is derived by using Lagrange's equation. The influences of the velocity of moving mass and the velocity of fluid flow and a crack have been studied on the dynamic behavior of a simply supported pipe system by numerical method. The presence of crack results in higher deflections of pipe. The crack section is represented by a local flexibility matrix connecting two undamaged beam segments i.e. the crack is modelled as a rotational spring. Totally, as the velocity of fluid flow and the crack severity are increased, the mid-span deflection of simply supported pipe conveying fluid is increased. The time which produce the maximum dynamic deflection of the simply supported pipe is delayed according to the increment of the crack severity.

  • PDF

AMDM for free vibration analysis of rotating tapered beams

  • Mao, Qibo
    • Structural Engineering and Mechanics
    • /
    • v.54 no.3
    • /
    • pp.419-432
    • /
    • 2015
  • The free vibration of rotating Euler-Bernoulli beams with the thickness and/or width of the cross-section vary linearly along the length is investigated by using the Adomian modified decomposition method (AMDM). Based on the AMDM, the governing differential equation for the rotating tapered beam becomes a recursive algebraic equation. By using the boundary condition equations, the dimensionless natural frequencies and the closed form series solution of the corresponding mode shapes can be easily obtained simultaneously. The computed results for different taper ratios as well as different offset length and rotational speeds are presented in several tables and figures. The accuracy is assured from the convergence and comparison with the previous published results. It is shown that the AMDM provides an accurate and straightforward method of free vibration analysis of rotating tapered beams.

An analytical study on the nonlinear vibration of a double-walled carbon nanotube

  • Hajnayeb, Ali;Khadem, S.E.
    • Structural Engineering and Mechanics
    • /
    • v.54 no.5
    • /
    • pp.987-998
    • /
    • 2015
  • In this paper, free vibrations of a clamped-clamped double-walled carbon nanotube (DWNT) under axial force is studied. By utilizing Euler-Bernoulli beam theory, each layer of DWNT is modeled as a beam. In this analysis, nonlinear form of interlayer van der Waals (vdW) forces and nonlinearities aroused from mid-plane stretching are also considered in the equations of motion. Further, direct application of multiple scales perturbation method is utilized to solve the obtained equations and to analyze free vibrations of the DWNT. Therefore, analytical expressions are found for vibrations of each layer. Linear and nonlinear natural frequencies of the system and vibration amplitude ratios of inner to outer layers are also obtained. Finally, the results are compared with the results obtained by Galerkin method.

Analytical Models to Predict Power Harvesting with Piezoelectric Transducer

  • Muppala, Raghava Raju;Raju, K. Padma;Moon, Nam-Mee;Jung, Baek-Ho
    • Journal of electromagnetic engineering and science
    • /
    • v.8 no.1
    • /
    • pp.6-11
    • /
    • 2008
  • Advances in low power design open the possibility to harvest energy from the environment to power electronic circuits. Electrical energy can be harvested from piezoelectric transducer. Piezoelectric materials can be used as mechanisms to transfer mechanical energy usually vibrating system into electrical energy that can be stored and used to power other devices. Micro- to milli-watts power can be generated from vibrating system. We developed definitive and analytical models to predict the power generated from a cantilever beam attached with piezoelectric transducer. Analytical models are pin-force method, enhanced pin-force method and Euler-Bernoulli method. Harmonic oscillations and random noise will be the two different forcing functions used to drive each system. It has been selected the best model for generating electric power based upon the analytical results obtained.

A Study on Dynamic Behavior of Simply Supported Fluid Flow Pipe with Crack and Moving Mass (크랙과 이동질량을 가진 유체유동 단순지지 파이프의 동특성에 관한 연구)

  • Yoon, Han-Ik;Jin, Jong-Tae;Son, In-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.4
    • /
    • pp.419-426
    • /
    • 2004
  • In this paper, studied about the effect of open crack and the moving mass on the dynamic behavior of simply supported pipe conveying fluid. The equation of motion is derived by using Lagrange's equation. The influences of the velocity of moving mass, the velocity of fluid flow and a crack have been studied on the dynamic behavior of a simply supported pipe system by numerical method. The crack section is represented by a local flexibility matrix connecting two undamaged beam segments. Therefore, the crack is modelled as a rotational spring. Totally, as the velocity of fluid flow is increased, the mid-span deflection of simply supported pipe conveying fluid is increased. The position of the crack is located in the middle point of the pipe, the mid-span deflection of simply supported pipe presents maximum deflection.

Forced vibration analysis of a dam-reservoir interaction problem in frequency domain

  • Keivani, Amirhossein;Shooshtari, Ahmad;Sani, Ahmad Aftabi
    • Coupled systems mechanics
    • /
    • v.3 no.4
    • /
    • pp.385-403
    • /
    • 2014
  • In this paper, the forced vibration problem of an Euler-Bernoulli beam that is joined with a semi-infinite field of a compressible fluid is considered as a boundary value problem (BVP). This BVP includes two partial differential equations (PDE) and some boundary conditions (BC), which are introduced comprehensively. After that, the closed-form solution of this fluid-structure interaction problem is obtained in the frequency domain. Some mathematical techniques are utilized, and two unknown functions of the BVP, including the beam displacement at each section and the fluid dynamic pressure at all points, are attained. These functions are expressed as an infinite series and evaluated quantitatively for a real example in the results section. In addition, finite element analysis is carried out for comparison.

Vibration analysis of inhomogeneous nonlocal beams via a modified couple stress theory incorporating surface effects

  • Ebrahimi, Farzad;Safarpour, Hamed
    • Wind and Structures
    • /
    • v.27 no.6
    • /
    • pp.431-438
    • /
    • 2018
  • This paper presents a free vibration analysis of size-dependent functionally graded (FG) nanobeams with all surface effects considerations on the basis of modified couple stress theory. The material properties of FG nanobeam are assumed to vary according to power law distribution. Based on the Euler-Bernoulli beam theory, the modeled nanobeam and its equations of motion are derived using Hamilton's principle. An analytical method is used to discretize the model and the equation of motion. The model is validated by comparing the benchmark results with the obtained results. Results show that the vibration behavior of a nanobeam is significantly influenced by surface density, surface tension and surface elasticity. Also, it is shown that by increasing the beam size, influence of surface effect reduces to zero, and the natural frequency tends to its classical value.

Nonlinear snap-buckling and resonance of FG-GPLRC curved beams with different boundary conditions

  • Lei-Lei Gan;Gui-Lin She
    • Geomechanics and Engineering
    • /
    • v.32 no.5
    • /
    • pp.541-551
    • /
    • 2023
  • Snap-buckling is one of the main failure modes of structures, because it will lead to the reduction of structural bearing capacity, durability loss and even structural damage. Boundary condition plays an important role in the research of engineering mechanics. Further discussion on the boundary conditions problems will help to analyze the dynamic and static behavior of structures more accurately. Therefore, in order to understand the dynamic and static behavior of curved beams more comprehensively, this paper mainly studies the nonlinear snap-through buckling and forced vibration characteristics of functionally graded graphene reinforced composites (FG-GPLRCs) curved beams with two different boundary conditions (including clamped-hinged and hinged-hinged) using Euler-Bernoulli beam theory (E-BBT). In addition, the effects of the curved beam radius, the GLPs distributions, number of GLPs layers, the mass fraction of GLPs and elastic foundation parameters on the nonlinear snap-through buckling and forced vibration behavior are discussed respectively.

Thermoelastic deformation properties of non-localized and axially moving viscoelastic Zener nanobeams

  • Ahmed E. Abouelregal;Badahi Ould Mohamed;Hamid M. Sedighi
    • Advances in nano research
    • /
    • v.16 no.2
    • /
    • pp.141-154
    • /
    • 2024
  • This study aims to develop explicit models to investigate thermo-mechanical interactions in moving nanobeams. These models aim to capture the small-scale effects that arise in continuous mechanical systems. Assumptions are made based on the Euler-Bernoulli beam concept and the fractional Zener beam-matter model. The viscoelastic material law can be formulated using the fractional Caputo derivative. The non-local Eringen model and the two-phase delayed heat transfer theory are also taken into account. By comparing the numerical results to those obtained using conventional heat transfer models, it becomes evident that non-localization, fractional derivatives and dual-phase delays influence the magnitude of thermally induced physical fields. The results validate the significant role of the damping coefficient in the system's stability, which is further dependent on the values of relaxation stiffness and fractional order.

Semi-analytical stability behavior of composite concrete structures via modified non-classical theories

  • Luxin He;Mostafa Habibi;Majid Khorami
    • Advances in concrete construction
    • /
    • v.17 no.4
    • /
    • pp.187-210
    • /
    • 2024
  • Cantilever structures demonstrate diverse nonlocal effects, resulting in either stiffness hardening or dynamic softening behaviors, as various studies have indicated. This research delves into the free and forced vibration analysis of rotating nanoscale cylindrical beams and tubes under external dynamic stress, aiming to thoroughly explore the nonlocal impact from both angles. Utilizing Euler-Bernoulli and Reddy beam theories, in conjunction with higher-order tube theory and Hamilton's principle, nonlocal governing equations are derived with precise boundary conditions for both local and nonlocal behaviors. The study specifically examines two-dimensional functionally graded materials (2D-FGM), characterized by axially functionally graded (AFG) and radial porosity distributions. The resulting partial differential equations are solved using the generalized differential quadrature element method (GDQEM) and Newmark-beta procedures to acquire time-dependent results. This investigation underscores the significant influence of boundary conditions when nonlocal forces act on cantilever structures.