• Title/Summary/Keyword: Euler polynomials

Search Result 102, Processing Time 0.02 seconds

Application of Golden Ratio Jacket Code in MIMO Wireless Communications (MIMO 통신에서 황금(黃金) 비(比) 자켓코드의 응용)

  • Kim, Jeong-Su;Lee, Moon-Ho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.17 no.4
    • /
    • pp.83-93
    • /
    • 2017
  • In everyday life, the ratio of credit card aspect ratio is 1: 1.56, and A4 printer paper is 1: 1.414, which is relatively balanced golden ratio. In this paper, we show the Fibonacci Golden ratio as a polynomial based on the golden ratio, which is the most balanced and ideal visible ratio, and show that the application of Euler and symmetric jacket polynomial is related to BPSK and QPSK constellation. As a proof method, we have derived Fibonacci Golden and Galois field element polynomials. Then mathematically, We have newly derived a golden jacket code that can be used to generate an appropriate code with orthogonal properties and can simply be used for inverse calculation. We also obtained a channel capacity according to the channel correlation change using a block jacket matrix in a MIMO mobile communication.

On the Improvement of the Accuracy of Higher Order Derivatives in the MLS(Moving Least Square) Difference Method via Mixed Formulation (MLS 차분법의 결정 변수에 따른 정확도 분석 및 혼합변분이론을 통한 미분근사 성능향상)

  • Kim, Hyun-Young;Kim, Jun-Sik
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.33 no.5
    • /
    • pp.279-286
    • /
    • 2020
  • In this study, we investigate the accuracy of higher order derivatives in the moving least square (MLS) difference method. An interpolation function is constructed by employing a Taylor series expansion via MLS approximation. The function is then applied to the mixed variational theorem in which the displacement and stress resultants are treated as independent variables. The higher order derivatives are evaluated by solving simply supported beams and cantilevers. The results are compared with the analytical solutions in terms of the order of polynomials, support size of the weighting function, and number of nodes. The accuracy of the higher order derivatives improves with the employment of the mean value theorem, especially for very high-order derivatives (e.g., above fourth-order derivatives), which are important in a classical asymptotic analysis.