• 제목/요약/키워드: Euler Method

검색결과 816건 처리시간 0.03초

Multi-Beams modelling for high-rise buildings subjected to static horizontal loads

  • Sgambi, Luca
    • Structural Engineering and Mechanics
    • /
    • 제75권3호
    • /
    • pp.283-294
    • /
    • 2020
  • In general, the study of a high-rise building's behaviour when subjected to a horizontal load (wind or earthquake) is carried out through numerical modelling with finite elements method. This paper proposes a new, original approach based on the use of a multi-beams model. By redistributing bending and axial stiffness of horizontal elements (beams and slabs) along vertical elements, it becomes possible to produce a system of differential equations able to represent the structural behaviour of the whole building. In this paper this approach is applied to the study of bending behaviour in a 37-storey building (Torre Pontina, Latina, Italy) with a regular reinforced concrete structure. The load considered is the wind, estimated in accordance with Italian national technical rules and regulations. To simplify the explanation of the approach, the wind load was considered uniform on the height of building with a value equal to the average value of the wind load distribution. The system of differential equations' is assessed numerically, using Matlab, and compared with the obtainable solution from a finite elements model along with the obtainable solutions via classical Euler-Bernoulli beam theory. The comparison carried out demonstrates, in the case study examined, an excellent approximation of structural behaviour.

기계 부품의 조립분해 작업을 위한 로봇핸드 그리퍼 설계 및 견실제어에 관한 연구 (A Study on Robot Hand Gripper Design and Robust Control for Assembly and Disassembly Task of Machine Parts)

  • 정규현;신기수;노연국;문병갑;윤병석;배호영;김민성;한성현
    • 한국산업융합학회 논문집
    • /
    • 제20권4호
    • /
    • pp.299-305
    • /
    • 2017
  • This study proposes a new technique to design and control of robot hand gripper for assembling and disassembling of a machine parts. The motion equation describing dynamics of the manipulators and object together with geometric constraint is formulated by Lagrange-Euler's equation. And the problems of controlling both the grasping force and the rotation angle of the grasped object under the constraints are analyzed. The effect of geometric constraints and a method of computer simulation for overall system is verified. Finally, it is illustrated that even in case of there exists a sensory feedback from sensing data of the rotational angle of the object to command inputs control of joint and this feedback connection from sensing data to control grasping of machinery parts.

Analytical solution for natural frequency of monopile supported wind turbine towers

  • Rong, Xue-Ning;Xu, Ri-Qing;Wang, Heng-Yu;Feng, Su-Yang
    • Wind and Structures
    • /
    • 제25권5호
    • /
    • pp.459-474
    • /
    • 2017
  • In this study an analytical expression is derived for the natural frequency of the wind turbine towers supported on flexible foundation. The derivation is based on a Euler-Bernoulli beam model where the foundation is represented by a stiffness matrix. Previously the natural frequency of such a model is obtained from numerical or empirical method. The new expression is based on pure physical parameters and thus can be used for a quick assessment of the natural frequencies of both the real turbines and the small-scale models. Furthermore, a relationship between the diagonal and non-diagonal element in the stiffness matrix is introduced, so that the foundation stiffness can be obtained from either the p-y analysis or the loading test. The results of the proposed expression are compared with the measured frequencies of six real or model turbines reported in the literature. The comparison shows that the proposed analytical expression predicts the natural frequency with reasonable accuracy. For two of the model turbines, some errors were observed which might be attributed to the difference between the dynamic and static modulus of saturated soils. The proposed analytical solution is quite simple to use, and it is shown to be more reasonable than the analytical and the empirical formulas available in the literature.

부분입사형 초음속 터빈의 노즐과 익렬의 상호작용에 관한 연구 (A Study on the Nozzle-Rotor Interactions of Partial Admission Supersonic Turbines)

  • 성영식;한성훈;김귀순;박창규
    • 한국추진공학회지
    • /
    • 제8권3호
    • /
    • pp.53-60
    • /
    • 2004
  • 노즐과 익렬의 상호작용과 부분입사 효과를 연구하기 위해 노즐과 터빈의 익렬을 같이 계산하였고, 충격파의 구조와 유동의 현상을 밝혀내기 위해 많은 계산을 하였다. 지배방정식은 시간에 관해서는 오일러 음해법으로, 공간에 관해서는 유한체적법을 사용하여 2차의 상류차분법으로 이산화하였으며 $\kappa$-$\varepsilon$ 난류 모델을 사용하였다. 본 논문에서는 익렬의 앞전에서 발생한 충격파와 확장파가 노즐 유동에 영향을 주는 것과 익렬내부의 유동이 노즐에서 발생한 충격파의 영향을 받는 것을 확인하였다.

Design of a Fuzzy Logic Controller for a Rotary-type Inverted Pendulum System

  • Park, Byung-Jae;Ryu, Chun-ha;Choi, Bong-Yeol
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제2권2호
    • /
    • pp.109-114
    • /
    • 2002
  • Various inverted pendulum systems have been frequently used as a model for the performance test of the proposed control system. We first identify a rotary-type inverted pendulum system by the Euler-Lagrange method and then design a FLC (Fuzzy Logic Controller) fur the plant. FLC`s are one of useful control schemes fur plants having difficulties in deriving mathematical models or having performance limitations with conventional linear control schemes. Many FLC`s imitate the concept of conventional PD (Proportional-Derivative) or PI (Proportional-Integral) controller. That is, the error e and the change-of-error are used as antecedent variables and the control input u the change of control input Au is used as its consequent variable for FLC`s. In this paper we design a simple-structured FLC for the rotary inverted pendulum system. We also perform some computer simulations to examine the tracking performance of the closed-loop system.

Simulation model for Francis and Reversible Pump Turbines

  • Nielsen, Torbjorn K.
    • International Journal of Fluid Machinery and Systems
    • /
    • 제8권3호
    • /
    • pp.169-182
    • /
    • 2015
  • When simulating the dynamic behaviour of a hydro power plant, it is essential to have a good representation of the turbine behaviour. The pressure transients in the system occurs because the flow changes, which the turbine defines. The flow through the turbine is a function of the pressure, the speed of rotation and the wicket gate opening and is, most often described in a performance diagram or Hill diagram. In the Hill diagram, the efficiency is drawn like contour lines, hence the name. A turbines Hill diagram is obtained by performance tests on scaled model in a laboratory. However, system dynamic simulations have to be performed in the early stage of a project, before the turbine manufacturer has been chosen and the Hill diagram is known. Therefore one have to rely on diagrams for a turbine with similar speed number. The Hill diagram is drawn through measured points, so for using the diagram in a simulation program, one have to iterate in the diagram based on curve fitting of the measured points. This paper describes an alternative method. By means of the Euler turbine equation, it is possible to set up two differential equations which represents the turbine performance with good enough accuracy for the dynamic simulations. The only input is the turbine's main geometry, the runner blade in- and outlet angle and the guide vane angle at best efficiency point of operation (BEP). In the paper, simulated turbine characteristics for a high head Francis turbine, and for a reversible pump turbine are compared with laboratory measured characteristics.

Unsteady Aerodynamic Loads on High Speed Trains Passing by Each Other

  • Hwang, Jae-Ho;Lee, Dong-Ho
    • Journal of Mechanical Science and Technology
    • /
    • 제14권8호
    • /
    • pp.867-878
    • /
    • 2000
  • In order to study unsteady aerodynamic loads on high speed trains passing by each other 350km/h, three-dimensional flow fields around trains during the crossing event are numerically simulated using three-dimensional Euler equations. Roe's FDS with MUSCL interpolation is employed to simulate wave phenomena. An efficient moving grid system based on domain decomposition techniques is developed to analyze the unsteady flow field induced by the restricted motion of a train on a rail. Numerical simulations of the trains passing by on the double-track are carried out to study the effect of the train nose-shape, length and the existence of a tunnel on the crossing event. Unsteady aerodynamic loads-a side force and a drag force-acting on the train during the crossing are numerically predicted and analyzed. The side force mainly depends on the nose-shape, and the drag force depends on tunnel existence. Also. a push-pull (i.e.impluse force) force successively acts on each car and acts in different directions between the neighborhood cars. The maximum change of the impulsive force reaches about 3 tons. These aerodynamic force data are absolutely necessary to evaluate the stability of high speed multi-car trains. The results also indicate the effectiveness of the present numerical method for simulating the unsteady flow fields induced by bodies in relative motion.

  • PDF

기하학적 비선형성을 갖는 유체를 수송하는 곡선관의 진동 특성 (Vibration Characteristics of a Curved Pipe Conveying Fluid with the Geometric Nonlinearity)

  • 정두한;정진태
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.793-798
    • /
    • 2004
  • The vibration of a curved pipe conveying fluid is studied when the pipe is clamped at both ends. To consider the geometric nonlinearity, this study adopts the Lagrange strain theory for large deformation and the extensible dynamics based on the Euler-Bernoulli beam theory for slenderness assumption. By using the extended Hamilton principle, the non-linear partial differential equations are derived for the in-plane motions of the pipe. The linear and non-linear terms in the governing equations are compared with those in the previous study, and some significant differences are discussed. To investigate the vibration characteristics of the system, the discretized equations of motion are derived from the Galerkin method. The natural frequencies varying with the flow velocity are computed from the two cases, which one is the linear problem and the other is the linearized problem in the neighborhood of the equilibrium position. From these results, we should consider the geometric nonlinearity to analyze the dynamics of a curved pipe conveying fluid more precisely.

  • PDF

비대칭 공기흡입구를 통해 전파하는 소음의 방사특성에 관한 수치적 연구 (Numerical Investigation on Radiation Characteristics of Noise Propagating through Asymmetry Aero-Intake)

  • 박용환;김민우;이규호;이수갑
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 추계학술대회논문집
    • /
    • pp.1476-1481
    • /
    • 2007
  • Numerical investigation on radiation characteristics of discrete frequency noise from asymmetry aero-intakes was carried out. The near-field predictions were obtained by solving the linearized Euler equations with computational aeroacoustic techniques consisting of high order finite difference scheme, non-reflecting boundary conditions, oversetgrid techniques. For the prediction of far-field directivity pattern, the Kirchhoff integral method was applied. By comparing the directivities of noise radiating from the scarf and the scoop aero-intakes with that from an axisymmetric aero-intake, it is shown that noise reduction at downward peak radiation angle can be achieved. The scattering of the radiating acoustic wave by background mean flow shifts the peak lobe radiation angle toward ground and increases the amplitude of the acoustic pressure compared with the cases without mean flow effect.

  • PDF

Derivation of the Extended Elastic Stiffness Formula of the Holddown Spring Assembly Comprised of Several Leaves

  • Song, Kee-Nam;Kang, H.S.;Yoon, K.H.
    • Nuclear Engineering and Technology
    • /
    • 제31권3호
    • /
    • pp.328-334
    • /
    • 1999
  • Based on the Euler beam theory and the elastic strain energy method, the elastic stiffness formula of the holddown spring assembly consisting of several leaves was previously derived. Even though the previous formula was known to be useful to estimate the elastic stiffness of the holddown spring assembly, recently it was reported that the elastic stiffness from the previous formula deviated greatly from the test results as the number of leaves was increased. The objective of this study is to extend the previous formula in order to resolve such an increasing deviation when increasing the number of leaves. Additionally, considering the friction forces acting on the interfaces between the leaves, we obtained an extended elastic stiffness formula. The characteristic test and the elastic stiffness analysis on the various kinds of specimens of the holddown spring assembly have been carried out; the validity of the extended formula has been verified by the comparison of their results. As a result of comparisons, it is found that the extended formula is able to evaluate the elastic stiffness of the holddown spring assembly within the maximum error range of + 12%, irrespective of the number of the leaves.

  • PDF