• Title/Summary/Keyword: Euler Equation

Search Result 448, Processing Time 0.023 seconds

Effects of deformation of elastic constraints on free vibration characteristics of cantilever Bernoulli-Euler beams

  • Wang, Tong;He, Tao;Li, Hongjing
    • Structural Engineering and Mechanics
    • /
    • v.59 no.6
    • /
    • pp.1139-1153
    • /
    • 2016
  • Elastic constraints are usually simplified as "spring forces" exerted on beam ends without considering the "spring deformation". The partial differential equation governing the free vibrations of a cantilever Bernoulli-Euler beam considering the deformation of elastic constraints is firstly established, and is nondimensionalized to obtain two dimensionless factors, $k_v$ and $k_r$, describing the effects of elastically vertical and rotational end constraints, respectively. Then the frequency equation for the above Bernoulli-Euler beam model is derived using the method of separation of variables. A numerical analysis method is proposed to solve the transcendental frequency equation for the continuous change of the frequency with $k_v$ and $k_r$. Then the mode shape functions are given. Finally, effects of $k_v$ and $k_r$ on free vibration characteristics of the beam with different slenderness ratios are calculated and analyzed. The results indicate that the effects of $k_v$ are larger on higher-order free vibration characteristics than on lower-order ones, and the impact strength decreases with slenderness ratio. Under a relatively larger slenderness ratio, the effects of $k_v$ can be neglected for the fundamental frequency characteristics, while cannot for higher-order ones. However, the effects of $k_r$ are large on both higher- and lower-order free vibration characteristics, and cannot be neglected no matter the slenderness ratio is large or small.

Generalized Kinematic Analysis for the Motion of 3-D Linkages using Symbolic Equation (기호방정식을 이용한 3차원 연쇄기구 운동해석의 일반화)

  • 김호룡
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.1
    • /
    • pp.102-109
    • /
    • 1986
  • Based on the Hartenberg-Denavit symbolic equation, which is one of equations for the kinematic analysis of three dimensional (3-D) linkage, a generalized kinematic motion equation is derived utilizing Euler angles and employing the coordinates transformation. The derived equation can feasibly be used for the motion analysis of any type of 3-D linkages as well as 2-D ones. In order to simulate the general motion of 3-D linkgages on digital computer, the generalized equation is programmed through the process of numerical analysis after converting the equation to the type of Newton-Raphson formula and denoting it in matrix form. The feasibility of theoretically derived equation is experimentally proved by comparing the results from the computer with those from experimental setup of three differrent but generally empolyed 3-D linkages.

양력선 이론을 이용한 EDISON CFD 해석자의 검증

  • Kim, Tae-Hui
    • Proceeding of EDISON Challenge
    • /
    • 2016.11a
    • /
    • pp.101-105
    • /
    • 2016
  • Prandtl's Lifting-line theory is the classical theory of calculating aerodynamic properties. Though it is classical method, it predicts the aerodynamic properties well. By lifting-line theory, high aspect ratio is critical factor to decrease induced drag. And 'elliptic-similar' wing also makes the minimum induced drag. But due to the problem of manufacturing, tapered wing is preferred and have been utilized. In this Paper, by using Edison CFD, verifying the classical lifting-line theory. To consider induced drag only, using Euler equation as governing equation instead of full Navier-Stokes equation. Refer to the theory, optimum taper ratio which makes the minimum induced drag is 0.3. Utilizing the CFD results, plotting oswald factor over various taper ratio and investigating whether the consequences are valid or not. As a result, solving Euler equation by EDISON CFD cannot guarantee the theoretical values because it is hard to set the proper grid to solve. Results are divided into two cases. One is the values are decreased gradually and another seems to following tendency, but values are all negative number.

  • PDF

General Solutions to the Navier-Stokes Equations for Incompressible Flow

  • JangRyong Shin
    • Journal of Ocean Engineering and Technology
    • /
    • v.38 no.5
    • /
    • pp.315-324
    • /
    • 2024
  • Waves are mainly generated by wind via the transfer of wind energy to the water through friction. When the wind subsides, the waves transition into swells and eventually dissipate. Friction plays a crucial role in the generation and dissipation of waves. Numerous wave theories have been developed based on the assumption of inviscid flow, but these theories are inadequate in explaining the transformation of waves into swells. This study addressed these limitations by analytically deriving general solutions to the Navier-Stokes equations. By expressing the velocity field as the product of a solution to the Helmholtz equation and a time-dependent univariate function, the Navier-Stokes equations are decomposed into an ordinary differential equation and the Euler equations, which are solved using tensor calculus. This paper provides solutions for viscous flow with shear currents when applied to the water wave problem. These solutions were validated through their application to the vorticity equation. The decay modulus of water waves was compared with experimental data, showing a significant degree of concordance. In contrast to other wave theories, this study clarified the process through which waves evolve into swells.

Free Vibrations of Compressive Members Resting on Linear Elastic Foundation (선형 탄성지반 위에 놓인 압축부재의 자유진동)

  • 이병구;이광범;모정만;신성철
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.42 no.6
    • /
    • pp.122-129
    • /
    • 2000
  • The purpose of this study is to investigate both the fundamental and some higher natural frequencies and mode shapes of compressive members resting on the linear elastic foundation. The model of compressive member is based on the classical Bernoulli-Euler beam theory. The differential equation governing free vibrations of such members subjected to an axial load is derived and solved numerically for calculating the natural frequencies and mode shapes. The Improved Euler method is used to integrate the differential equation and the Determinant Search method combined with the Regula-Falsi method to determine the natural frequencies, respectively. In numerical examples, the hinged-hinged, hinged-clamped, clamped-hinged and clamped-clamped end constraints are considered. The convergence analysis is conducted for determining the available step size in the Improved Euler method. The validation of theories developed herein is also conducted by comparing the numerical results between this study and SAP 90. The non-dimensional frequency parameters are presented as the non-dimensional system parameters: section ratio, modulus parameter and load parameter. Also typical mode shapes are presented.

  • PDF

Convergence and Stability Analysis of LU Scheme on Unstructured Meshes: Part I - Euler Equations (비정렬 격자계에서 LU Implicit Scheme의 수렴성 및 안정성 해석 : Part I-오일러 방정식)

  • Kim, Joo-Sung;Kwon, Oh-Joon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.9
    • /
    • pp.1-11
    • /
    • 2004
  • A comprehensive study has been made for the investigation of the convergence and stability characteristics of the LU scheme for solving the Euler equations on unstructured meshes. The von Neumann stability analysis technique was initially applied to a scalar model equation, and then the analysis was extended to the Euler equations. The results indicated that the convergence rate is governed by a specific combination of flow parameters. Based on this insight, it was shown that the LU scheme does not suffer any convergence deterioration at all grid aspect ratios, as long as the local time step is defined using an appropriate parameter combination.

Guided Reinvention of Euler Algorithm: -An Analysis of Progressive Mathematization in RME-Based Differential Equations Course- (오일러 알고리즘의 안내된 재 발명 -RME 기반 미분 방정식 수업에서 점진적 수학화 과정 분석-)

  • 권오남;주미경;김영신
    • The Mathematical Education
    • /
    • v.42 no.3
    • /
    • pp.387-402
    • /
    • 2003
  • Realistic Mathematics Education (RME) focuses on guided reinvention through which students explore experientially realistic context problems to develop informal problem solving strategies and solutions. This research applied this philosophy of RME to design a differential equation course at a university level. In particular, the course encouraged the students of the course to use numerical methods to solve differential equations. In this context, the purpose of this research was to describe the developmental process in which the students constructed and reinvented Euler algorithm in the class. For the purpose, this paper will present the didactical principle of RME and describe the process of developmental research to investigate the inferential process of students in solving the first order differential equation numerically. Finally, the qualitative analysis of the students' reasoning and use of symbols reveals how the students reinvent Euler algorithm under the didactical principle of guided reinvention. In this research, it has been found that the students developed deep understanding of Euler algorithm in the class. Moreover, it has been shown that the experience of doing mathematics in the course had a positive impact on students' mathematical belief and attitude. These findings imply that the didactical principle of RME can be applied to design university mathematical courses and in general, provide a perspective on how to reform mathematics curriculum at a university level.

  • PDF

Development of a Three-Dimensional Euler Solver for Analysis of Basic Contraction Flow (수축부 기초 유동 해석을 위한 삼차원 Euler 방정식 풀개 개발)

  • Kim J.;Kim H. T.
    • Journal of computational fluids engineering
    • /
    • v.2 no.1
    • /
    • pp.8-12
    • /
    • 1997
  • The three-dimensional Euler equations are solved numerically for the analysis of contraction flows in wind or water tunnels. A second-order finite difference method is used for the spatial discretization on the nonstaggered grid system and the 4-stage Runge-Kutta scheme for the numerical integration in time. In order to speed up the convergence, the local time stepping and the implicit residual-averaging schemes are introduced. The pressure field is obtained by solving the pressure-Poisson equation with the Neumann boundary condition. For the evaluation of the present Euler solver, numerical computations are carried out for three contraction geometries, one of which was adopted in the Large Cavitation Channel for the U.S. Navy. The comparison of the computational results with the available experimental data shows good agreement.

  • PDF

Evaluation of Young's Modulus of a Cantilever Beam by TA-ESPI (TA-ESPI에 의한 외팔보의 탄성계수 측정)

  • Lee H.S.;Kim K.S.;Kang K.S.;Jung H.C.;Yang S.P.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1115-1119
    • /
    • 2005
  • The paper proposes the elastic modulus evaluation technique of a cantilever beam by vibration analysis based on time-average electronic speckle pattern interferometry (TA-ESPI) with non-contact and nondestructive and Euler-Bernoulli equation. General approaches for the measurement of elastic modulus of thin film are Nano indentation test, Bulge test and Micro-tensile test and so on. They each have strength and weakness in the preparation of test specimen and the analysis of experimental result. ESPI has been developed as a common measurement method for vibration mode visualization and surface displacement. Whole-field vibration mode shape (surface displacement distribution) at a resonance frequency can be visualized by ESPI. And the maximum surface displacement distribution from ESPI is a clue to find the resonance frequency at each vibration mode shape. And the elastic modules of test material can be easily estimated from the measured resonance frequency and Euler-Bernoulli equation. The TA-ESPI vibration analysis technique is able to give the elastic modulus of materials through the simple processing of preparation and analysis.

  • PDF

IMPLEMENTATION OF ADAPTIVE WAVELET METHOD FOR ENHANCEMENT OF COMPUTATIONAL EFFICIENCY FOR THREE DIMENSIONAL EULER EQUATION (3차원 오일러 방정식의 계산 효율성 증대를 위한 Adaptive Wavelet 기법의 적용)

  • Jo, D.U.;Park, K.H.;Kang, H.M.;Lee, D.H.
    • Journal of computational fluids engineering
    • /
    • v.19 no.2
    • /
    • pp.58-65
    • /
    • 2014
  • The adaptive wavelet method is studied for the enhancement of computational efficiency of three-dimensional flows. For implementation of the method for three-dimensional Euler equation, wavelet decomposition process is introduced based on the previous two-dimensional adaptive wavelet method. The order of numerical accuracy of an original solver is preserved by applying modified thresholding value. In order to assess the efficiency of the proposed algorithm, the method is applied to the computation of flow field around ONERA-M6 wing in transonic regime with 4th and 6th order interpolating polynomial respectively. Through the application, it is confirmed that the three-dimensional adaptive wavelet method can reduce the computational time while conserving the numerical accuracy of an original solver.