• Title/Summary/Keyword: Euler Beam

Search Result 534, Processing Time 0.021 seconds

Non-linear Vibration Analysis for the In-plane Motion of a Semi-circular Pipe Conveying Fluid (유체를 수송하는 반원형 곡선관의 면내운동에 대한 비선형 진동 해석)

  • 정두한;정진태
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.677-682
    • /
    • 2003
  • The non-linear dynamic characteristics of a semi-circular pipe conveying fluid are investigated when the pipe is clamped at both ends. To consider the geometric non-linearity for the radial and circumferential displacements, this study adopts the Lagrange strain theory for large deformation and the extensible dynamics based on the Euler-Bernoulli beam theory for slenderness assumption. By using the Hamilton principle, the non-linear partial differential equations are derived for the in-plane motions of the pipe, considering the fluid inertia forces as a kind of non-conservative forces. The linear and non-linear terms in the governing equations are compared with those in the previous study, and some significant differences are discussed. To investigate the dynamic characteristics of the system, the discretized equations of motion are derived form the Galerkin method. The natural frequencies varying with the flow velocity are computed fen the two cases, which one is the linear problem and the other is the linearized problem in the neighborhood of the equilibrium position. Finally, the time responses at various flow velocities are directly computed by using the generalized- method. From these results, we should to describe the non-linear behavior to analyze dynamics of a semi-circular pipe conveying fluid more precisely.

  • PDF

Vibration Analysis of Stiffened Plates having a Resiliently Mounted or Concentrated Mass (탄성지지부가물(彈性支持附加物) 또는 집중질량(集中質量)을 갖는 보강판(補剛板)의 진동해석(振動解析))

  • S.Y.,Han;K.C.,Kim
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.23 no.1
    • /
    • pp.23-32
    • /
    • 1986
  • By virtue of an application of the receptance method, simplified formulae to calculate natural frequencies of stiffened plates having a resiliently mounted or concentrated mass are obtained. Some numerical results are compared with those based on Lagrange's equation of motion and with experimental results. For the problem formulation the stiffened plate is reduced to an equivalent orthotropic plate, a resiliently mounted mass to a spring-mass system, and mode shapes of the plate are assumed with comparison functions consisting of Euler beam functions. The proposed formulae give results in good conformity to both numerical results based on Lagrange's equation of motion and experimental results for in-phase modes of the coupled system. For out-of-phase modes the conformity is assured only in case that the natural frequency of the attached system is less than a half of that the stiffened plate. It is also found that a resiliently mounted mass having its own natural frequency of about two or more times that of the stiffened plate can be reduced to a concentrated mass with assurance of a few percent error in the frequency.

  • PDF

Critical Loads of Tapered Beck's Columns with Clamped and Spring Supports (일단고정 타단스프링으로 지지된 변단면 Beck 기둥의 임계하중)

  • Kim Suk-Ki;Park Kwang-Kyou;Lee Byoung-Koo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.19 no.1 s.71
    • /
    • pp.85-92
    • /
    • 2006
  • This paper investigates critical loads of the tapered Beck's columns with clamped and spring supports, subjected to a subtangential follower force. The linearly tapered columns with the solid rectangular cross-section is adopted as the column taper. The differential equation governing free vibrations of such Beck's columns is derived using the Bemoulli-Euler beam theory. Both divergence and flutter critical loads are calculated from the load-frequency curves which are obtained by solving the differential equation. The critical loads are presented as functions of various non-dimensional system parameters: the taper type, the subtangential parameter and the spring stiffness.

Assessment of ride safety based on the wind-traffic-pavement-bridge coupled vibration

  • Yin, Xinfeng;Liu, Yang;Chen, S.R.
    • Wind and Structures
    • /
    • v.24 no.3
    • /
    • pp.287-306
    • /
    • 2017
  • In the present study, a new assessment simulation of ride safety based on a new wind-traffic-pavement-bridge coupled vibration system is developed considering stochastic characteristics of traffic flow and bridge surface. Compared to existing simulation models, the new assessment simulation focuses on introducing the more realistic three-dimensional vehicle model, stochastic characteristics of traffic, vehicle accident criteria, and bridge surface conditions. A three-dimensional vehicle model with 24 degrees-of-freedoms (DOFs) is presented. A cellular automaton (CA) model and the surface roughness are introduced. The bridge deck pavement is modeled as a boundless Euler-Bernoulli beam supported on the Kelvin model. The wind-traffic-pavement-bridge coupled equations are established by combining the equations of both the vehicles in traffic, pavement, and bridge using the displacement and interaction force relationship at the patch contact. The numerical simulation shows that the proposed method can simulate rationally useful assessment and prevention information for traffic, and define appropriate safe driving speed limits for vulnerable vehicles under normal traffic and bridge surface conditions.

New Non-linear Modelling for Vibration Analysis of Straight Pipe Conveying Fluid (유체 유동을 갖는 직선관의 진동 해석을 위해 새로운 비선형 모델링)

  • Lee, Soo-Il;Chung, Jin-Tai;Im, Hyung-Bin
    • Proceedings of the KSME Conference
    • /
    • 2001.06b
    • /
    • pp.372-377
    • /
    • 2001
  • A new non-linear of a straight pipe conveying fluid is presented for vibration analysis when the pipe is fixed at both ends. Using the Euler-Bernoulli beam theory and the non-linear Lagrange strain theory, from the extended Hamilton's principle are derived the coupled non-linear equations of motion for the longitudinal and transverse displacements. These equations of motion for are discretized by using the Galerkin method. After the discretized equations are linearized in the neighbourhood of the equilibrium position, the natural frequencies are computed from the linearized equations. On the other hand, the time histories for the displacements are also obtained by applying the $generalized-{\alpha}$ time integration method to the non-linear discretized equations. The validity of the new modeling is provided by comparing results from the proposed non-linear equations with those from the equations proposed by $Pa{\ddot{i}}dousis$.

  • PDF

Geometrically Nonlinear Analysis of Eccentrically Stiffened Plate (편심 보강평판의 기하학적 비선형 해석)

  • Jae-Wook Lee;Kie-Tae Chung;Young-Tae Yang
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.28 no.2
    • /
    • pp.307-317
    • /
    • 1991
  • A displacement-based finite element method is presented for the geometrically nonlinear analysis of eccentrically stiffened plates. The nonlinear degenerated shell and eccentric isobeam(isoparametric beam) elements are formulated on the basis of total Lagrangian and updated Lagrangian descriptions. To describe the stiffener's local plate buckling mode, some additional local degrees of freedom are used in the eccentric isobeam element. The eccentric isobeam element can be affectively employed to model the eccentric stiffener just like the case of the degenerated shell element. A detailed nonlinear analysis including the effects of stiffener's eccentricity is performed to estimate the critical load and the post buckling behaviour of an eccentrically stiffened plate. The critical buckling loads are found higher than analytic plate buckling load but lower than Euler buckling load which are the buckling strength requirements of classification society.

  • PDF

An analytical study on behavior of the girder panel in simplified composite deck under construction loadings (가설하중 하에서 초간편 강합성 바닥판 거더패널의 거동에 관한 해석적 연구)

  • Han, Deuk-Cheon;Kim, Sang-Seup;Yoon, Ki-Yong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.8 no.6
    • /
    • pp.1537-1542
    • /
    • 2007
  • In this study, based on a I-roll embedded steel composite deck, it is suggested a new type of simplified composite deck and analyzed under construction loading. Using ABAQUS, it's estimated effects of welding amount of steel plate and I-section, existence of a hole of I-section's flange, and a location of hole. For a reasonable verification of modeling, compare Euler-Beam theory with F.E.M models. In result, it is verified that change of welding amount increase more maximum bending tension stresses at the central part's section of span when elements are partial-welded. Also, verify that deflection is slightly increased when a hole existed compared with no hole.

  • PDF

Seismic Analysis of Vertical Pump in Power Plant (발전소용 입축펌프의 내진해석)

  • 최수용;박철희;홍성철;박용석
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1993.10a
    • /
    • pp.163-168
    • /
    • 1993
  • 현대 산업사회에서 발전소는 중요한 시설물이다. 특히 원자력발전소는 지진 과 같은 천재지변시 매우 위험하기 때문에 내진설계가 필수적으로 요구되어 진다. 최근 국내 원자력발전소의 증가와 1986년 이후 만들어진 내진관련 법 규에 따라 내진설계가 보편화 되어가고 있다. 본 연구에서는 발전소에서 쓰 이는 입축펌프를 해석대상기종으로하여 구조해석과 내진해석을 수행하엿다. 입축펌프는 큰 질량을 가진 모터가 펌프의 윗부분에 위치하고 있어 진동문 제가 야기되는 기종이다. 펌프의 고유진동수는 기초부의 강성과 수조의 내수 위에 따라 변하며, 펌프의 축계의 진동수에 비하여 구조계의 진동수가 운전 회전수에 가깝기 때문에 구조계의 진동이 문제시된다. 해석에 있어서 펌프는 단면이 변하는 Euler Beam으로 보고 유한요소법을 사용하여 모델링하였고, 물의 저항에 의한 부가질량을 고려하였다. 내진해석은 응답스펙트럼법으로 수행하였으며 GRS는 Housner가 0.2g에 대하여 제작한 것을 OBE 조건 (0.12g)으로 scaling하여 사용하였다. 각 모드에 대한 합성방법은 SRSS 법을 적용하였다. 또한 응답스펙트럼법과 시간이력해석의 결과를 비교하였으며, 시간이력해석에서, 수치해석방법으로는 Newmark법을 적용하였다. 지진자료 는, 1940년, California에서 발생한 Elcentro 지진 자료를 이용하였다. 연구수 행과정에서 기초강성계수와 수조내 물의 수위를 주된 인자로 하여 이들의 값에 따라 변하는 고유진동수를 고찰하고, 지진입력시 예상되는 최대응답을 구하여, 비교 분석하였다.

  • PDF

Dynamic Stability of Rotating Cantilever Pipe Conveying Fluid with Tip mass and Crack (끝단질량과 크랙을 가진 유체유동 회전 외팔 파이프의 동적 안정성)

  • Son, In-Soo;Yoon, Han-Ik;Kim, Dong-Jin
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.1
    • /
    • pp.101-109
    • /
    • 2008
  • The stability of a rotating cantilever pipe conveying fluid with a crack and tip mass is investigated by the numerical method. That is, the effects of the rotating angular velocity, mass ratio, crack severity and tip mass on the critical flow velocity for flutter instability of system are studied. The equations of motion of rotating pipe are derived by using the Euler-Bernoulli beam theory and the extended Hamilton's principle. The crack section of pipe is represented by a local flexibility matrix connecting two undamaged pipe segments. Also, the crack is assumed to be in the first mode of fracture and always opened during the vibrations. When the tip mass and crack are constant, the critical flow velocity for flutter is proportional to the rotating angular velocity of pipe. In addition, the stability maps of the rotating pipe system as a rotating angular velocity and mass ratio ${\beta}$ are presented.

Influence of porosity and axial preload on vibration behavior of rotating FG nanobeam

  • Ehyaei, Javad;Akbarshahi, Amir;Shafiei, Navvab
    • Advances in nano research
    • /
    • v.5 no.2
    • /
    • pp.141-169
    • /
    • 2017
  • In this paper, a nanobeam connected to a rotating molecular hub is considered. The vibration behavior of rotating functionally graded nanobeam based on Eringen's nonlocal theory and Euler-Bernoulli beam model is investigated. Furthermore, axial preload and porosity effect is studied. It is supposed that the material attributes of the functionally graded porous nanobeam, varies continuously in the thickness direction according to the power law model considering the even distribution of porosities. Porosity at the nanoscopic length scale can affect on the rotating functionally graded nanobeams dynamics. The equations of motion and the associated boundary conditions are derived through the Hamilton's principle and generalized differential quadrature method (GDQM) is utilized to solve the equations. In this paper, the influences of some parameters such as functionally graded power (FG-index), porosity parameter, axial preload, nonlocal parameter and angular velocity on natural frequencies of rotating nanobeams with pure ceramic, pure metal and functionally graded materials are examined and some comparisons about the influence of various parameters on the natural frequencies corresponding to the simply-simply, simplyclamped, clamped-clamped boundary conditions are carried out.