• 제목/요약/키워드: Eukaryotic initiation factor

검색결과 49건 처리시간 0.019초

진핵생물 개시인자 유래 펩타이드의 세포 성장 억제 효능 (Effect of cell growth inhibition by eukaryotic initiation factor 2 derived peptides)

  • 유한진;임광석
    • 산업기술연구
    • /
    • 제40권1호
    • /
    • pp.1-6
    • /
    • 2020
  • In the process of protein transcription and translation, various protein complexes bind to DNA, and all processes are precisely controlled. Among the proteins constituting this complex, a peptide derived from eukaryotic initiation factor (eIF) 2 was synthesized. In addition, in order to increase the efficiency of transduction of this peptide into cells, peptides with polyarginine, one of the protein transduction domains (PTD), were synthesized. Cell growth inhibition was confirmed in HER2 positive breast cancer (SK-Br-3) and HER2 negative breast cancer (MDA-MB-231), and cardiomyocytes (H9c2). The peptide with polyarginine had high transduction efficiency in all cells, and had excellent cancer cell growth inhibitory effects. The peptide used in this study might be useful peptide therapeutics for the treatment of cancer through future research.

Role of E2F1 in Endoplasmic Reticulum Stress Signaling

  • Park, Kyung Mi;Kim, Dong Joon;Paik, Sang Gi;Kim, Soo Jung;Yeom, Young Il
    • Molecules and Cells
    • /
    • 제21권3호
    • /
    • pp.356-359
    • /
    • 2006
  • The transcription factor E2F1 coordinates cell cycle progression and induces apoptosis in response to DNA damage stress. Aside from DNA damage, the role of E2F1 in the endoplasmic reticulum (ER) stress signaling pathways is unclear. We found that $E2F1^{-/-}$ murine embryonic fibroblasts (MEFs) are resistant to apoptosis triggered by the ER stress inducer thapsigargin. In addition, E2F1 deficiency results in enhanced phosphorylation of eukaryotic translation initiation factor $2{\alpha}$ ($elF2{\alpha}$). These results therefore indicate that E2F1 deficiency increases phosphorylation of $elF2{\alpha}$ in response to ER stress triggered by thapsigargin, and suggest that the reduction in ER stress-induced apoptosis in E2F1-deficient cells is related to the high level of $elF2{\alpha}$ phosphorylation.

Translational control of mRNAs by 3'-Untranslated region binding proteins

  • Yamashita, Akio;Takeuchi, Osamu
    • BMB Reports
    • /
    • 제50권4호
    • /
    • pp.194-200
    • /
    • 2017
  • Eukaryotic gene expression is precisely regulated at all points between transcription and translation. In this review, we focus on translational control mediated by the 3'-untranslated regions (UTRs) of mRNAs. mRNA 3'-UTRs contain cis-acting elements that function in the regulation of protein translation or mRNA decay. Each RNA binding protein that binds to these cis-acting elements regulates mRNA translation via various mechanisms targeting the mRNA cap structure, the eukaryotic initiation factor 4E (eIF4E)-eIF4G complex, ribosomes, and the poly (A) tail. We also discuss translation-mediated regulation of mRNA fate.

감자로부터 Eukaryotic Translation Initiation Factor 5A (elF-5A) 유전자의 동정 및 발현 분석 (Isolation and Characterization of Eukaryotic Translation Initiation Factor 5A (eIF-5A) from Potato)

  • 인준교;신동호;최관삼;양덕춘
    • 식물조직배양학회지
    • /
    • 제28권5호
    • /
    • pp.283-287
    • /
    • 2001
  • 감자 (Solanum tuberosum L. cv. Irish Cobbler)의 괴경형성과정 (tuberization) 동안에 발현하는 유전자들의 발현양상을 조사하고자 differential display법을 실시하였다. Differential display를 이용하여 분리된 eIF5A DNA단편을 probe로 사용하여 감자의 cDNA library screening을 통하여 eIF5A full-length cDNA를 감자에서 처음으로 분리하였다. 감자의 eIF5A, clone은 토마토의 eIF5A cDNA 염기서열과 94.8%. 아미노산 서열에서는 97.5%로 매우 높은 유사성을 나타내었다. 감자의 eIF5A 유전자는 길이가 716 bp로 하나의 단백질 code영역 (ORF)을 포함하고 있었다. 이 영역은 분자량 17.4 kD, pI 5.5로 추정되는 160개의 아미노산으로 구성된 eIF5A단백질을 code하고 있었다. eIF5A 단백질들에서 12개의 아미노산 서열 (STSKTGKHGHAK)은 효모에서 사람에 이르기까지 완벽하게 보존되어 있는 것으로 알려져 있는데, 감자에서도 또한 잘 보존되어 있었다. 이 영역은 eIF5A 단백질의 활성을 나타내는 데 있어서 필수적인 hypusine을 생성하는 전사 후 수식 부위가 들어 있는 아주 중요한 곳이다. 감자에서 eIF5A 유전자의 발현양상을 조사한 결과 감자의 전조직에서 발현을 보였는데, 성숙잎이나 괴경보다는 세포분열 및 물질축적이 활발히 일어나고 있는 꽃기관들 (stamen, ovary, petal. sepal), 과실 (fruit)과 stolen 등의 조직들에서 비교적 활발히 발현되고 있었다.

  • PDF

Phosphoinositide 3-kinase regulates myogenin expression at both the transcriptional and post-transcriptional level during myogenesis

  • Woo, Joo-Hong;Kim, Min-Jeong;Kim, Hye-Sun
    • Animal cells and systems
    • /
    • 제14권3호
    • /
    • pp.147-154
    • /
    • 2010
  • It is well-established that phosphoinositide 3-kinase (PI3-kinase) regulates myogenesis by inducing transcription of myogenin, a key muscle regulatory factor, at the initiation of myoblast differentiation. In this study, we investigated the role of PI3-kinase in cells that have committed to differentiation. PI3-kinase activity increases during myogenesis, and this increase is sustained during the myogenic process; however, its function after the induction of differentiation has not been investigated. We show that LY294002, a PI3-kinase inhibitor, blocked myoblast fusion even after myogenin expression initially increased. In contrast to the inhibitory effects of LY294002 on myogenin mRNA levels during the initiation of differentiation, LY294002 blocked the accumulation of myogenin protein without affecting its mRNA level after differentiation was induced. Treatment with cycloheximide, a translation inhibitor, or actinomycin D, a transcription inhibitor, indicated that the stability of myogenin protein is lower than that of its mRNA. LY294002 inhibited the activities of several important translation factors, including eukaryotic elongation factor-2(eEF2), by altering their phosphorylation status. In addition, LY294002 blocked the incorporation of [$^{35}S$]methionine into newly synthesized proteins. Since myogenin has a relatively short half-life, LY294002-mediated inhibition of post-transcriptional processes resulted in a rapid depletion of myogenin protein. In summary, these results suggest that PI3-kinase plays an important role in regulating the expression of myogenin through post-transcriptional mechanisms after differentiation has been induced.

Insulin-like Growth Factor-1 (IGF-1) Gene Expression Is Enhanced under Hypothermia but Depressed under Additional Ischemic Stimulus

  • Kwon, O-Yu;Kwon, Kisang;Yu, Kweon;Kim, Seung-Whan
    • 대한의생명과학회지
    • /
    • 제21권2호
    • /
    • pp.126-130
    • /
    • 2015
  • There are several studies that show hypothermia improves cellular ischemia damages on experimental and clinical bases. However, its exact molecular mechanisms are unclear. In this study, we demonstrate that hypothermia induced insulin-like growth factor 1 (IGF1) gene expression, and its expression was dramatically decreased under ischemic insults. It was also demonstrated that hypothermia activated endoplasmic reticulum (ER) stress sensors especially both the phosphorylation of $eIF2{\alpha}$ (eukaryotic translation initiation factor 2 alpha) and ATF6 (activating transcription factor-6) proteolytic cleavage. However, the factors of apoptosis and autophagy were not associated with hypothermia. We suggest that hypothermia-treated IGF1 gene expression after ischemia may show a good possibility for the development of treatments and diagnostic methods in cerebral ischemic damages.

The Role of Stress Granules in the Neuronal Differentiation of Stem Cells

  • Jeong, Sin-Gu;Ohn, Takbum;Jang, Chul Ho;Vijayakumar, Karthikeyan;Cho, Gwang-Won
    • Molecules and Cells
    • /
    • 제43권10호
    • /
    • pp.848-855
    • /
    • 2020
  • Cells assemble stress granules (SGs) to protect their RNAs from exposure to harmful chemical reactions induced by environmental stress. These SGs release RNAs, which resume translation once the stress is relieved. During stem cell differentiation, gene expression is altered to allow cells to adopt various functional and morphological features necessary to differentiate. This process induces stress within a cell, and cells that cannot overcome this stress die. Here, we investigated the role of SGs in the progression of stem cell differentiation. SGs aggregated during the neuronal differentiation of human bone marrow-mesenchymal stem cells, and not in cell lines that could not undergo differentiation. SGs were observed between one and three hours post-induction; RNA translation was restrained at the same time. Immediately after disassembly of SGs, the expression of the neuronal marker neurofilament-M (NF-M) gradually increased. Assembled SGs that persisted in cells were exposed to salubrinal, which inhibited the dephosphorylation of eukaryotic translation initiation factor 2 subunit 1 (eIF2α), and in eIF2α/S51D mutant cells. When eIF2α/S51A mutant cells differentiated, SGs were not assembled. In all experiments, the disruption of SGs was accompanied by delayed NF-M expression and the number of neuronally differentiated cells was decreased. Decreased differentiation was accompanied by decreased cell viability, indicating the necessity of SGs for preventing cell death during neuronal differentiation. Collectively, these results demonstrate the essential role of SGs during the neuronal differentiation of stem cells.

Structural Studies of Peptide Binding Interaction of HCV IRES Domain IV

  • Shin, Ji Yeon;Bang, Kyeong-Mi;Song, Hyun Kyu;Kim, Nak-Kyoon
    • 한국자기공명학회논문지
    • /
    • 제21권3호
    • /
    • pp.109-113
    • /
    • 2017
  • The hepatitis C virus (HCV) internal ribosome entry site (IRES) is an RNA structure located in the 5'-UTR of the HCV RNA genome. The HCV IRES consists of four domains I, II, III, and IV, where domains II - IV are recognized by 40S ribosomal subunit and the domain III is bound to eukaryotic initiation factor 3 (eIF3) for translation initiation. Here, we have characterized the tertiary interaction between an L-/K- rich peptide and the HCV IRES domain IV. To probe the peptide binding interface in RNA, we synthesized $^{13}C$- and $^{15}N$-double labeled RNA and the binding site was identified by using the chemical shift perturbation (CSP) NMR methods. Our results showed that the peptide binds to the upper stem of the IRES domain IV, indicating that the tertiary interaction between the IRES domain IV and the peptide would disrupt the initiation of translation of HCV mRNA by blocking the start codon exposure. This study will provide an insight into the new peptide-based anti-viral drug design targeting HCV IRES RNA.

Backbone 1H, 15N, and 13C resonance assignments and secondary structure prediction of SAV2228 (translation initiation factor-1) from Staphylococcus aureus

  • Kim, Do-Hee;Jang, Sun-Bok;Lee, Bong-Jin
    • 한국자기공명학회논문지
    • /
    • 제16권2호
    • /
    • pp.162-171
    • /
    • 2012
  • SAV2228 has an OB (Oligomer-Binding)-motif which is frequently used for nucleic acid recognition. To characterize the activity of translation initiation factor-1 (IF-1) from Staphylococcus aureus, SAV2228 was expressed and purified in Escherichia coli. We acquired 3D NMR spectra showing well dispersed and homogeneous signals which allow us to assign 94.4% of all $^1HN$, $^{15}N$, $^{13}C{\alpha}$, $^{13}C{\beta}$ and $^{13}CO$ resonances. We could predict a secondary structure of SAV2228 using TALOS and CSI from NMR data. SAV2228 was consisted of one ${\alpha}$-helix and five ${\beta}$-sheets. The predicted secondary structure, ${\beta}-{\beta}-{\beta}-{\alpha}-{\beta}-{\beta}$, was similar to other bacterial IF-1, but it was not completely same to the eukaryotic one. Assigned NMR peaks and secondary structre prediction can be used for the study on interaction with nucleic acid in the future.