Browse > Article
http://dx.doi.org/10.5483/BMBRep.2017.50.4.040

Translational control of mRNAs by 3'-Untranslated region binding proteins  

Yamashita, Akio (Department of Molecular Biology, Yokohama City University School of Medicine)
Takeuchi, Osamu (Laboratory of Infection and Prevention, Institute for Frontier Life and Medical Sciences, Kyoto University)
Publication Information
BMB Reports / v.50, no.4, 2017 , pp. 194-200 More about this Journal
Abstract
Eukaryotic gene expression is precisely regulated at all points between transcription and translation. In this review, we focus on translational control mediated by the 3'-untranslated regions (UTRs) of mRNAs. mRNA 3'-UTRs contain cis-acting elements that function in the regulation of protein translation or mRNA decay. Each RNA binding protein that binds to these cis-acting elements regulates mRNA translation via various mechanisms targeting the mRNA cap structure, the eukaryotic initiation factor 4E (eIF4E)-eIF4G complex, ribosomes, and the poly (A) tail. We also discuss translation-mediated regulation of mRNA fate.
Keywords
RNA binding protein; Translation; Translation initiation; 3'-UTR;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Chang CH, Curtis JD, Maggi LB Jr et al (2013) Posttranscriptional control of T cell effector function by aerobic glycolysis. Cell 153, 1239-1251   DOI
2 Kozak M (2006) Rethinking some mechanisms invoked to explain translational regulation in eukaryotes. Gene 382, 1-11   DOI
3 Goldstrohm AC and Wickens M (2008) Multifunctional deadenylase complexes diversify mRNA control. Nat Rev Mol Cell Biol 9, 337-344   DOI
4 Lim J, Ha M, Chang H et al (2014) Uridylation by TUT4 and TUT7 marks mRNA for degradation. Cell 159, 1365-1376   DOI
5 Subtelny AO, Eichhorn SW, Chen GR, Sive H and Bartel DP (2014) Poly(A)-tail profiling reveals an embryonic switch in translational control. Nature 508, 66-71   DOI
6 Park JE, Yi H, Kim Y, Chang H and Kim VN (2016) Regulation of Poly(A) Tail and Translation during the Somatic Cell Cycle. Mol Cell 62, 462-471   DOI
7 Lim J, Lee M, Son A, Chang H and Kim VN (2016) mTAIL-seq reveals dynamic poly(A) tail regulation in oocyte-to-embryo development. Genes Dev 30, 1671-1682   DOI
8 Kim JH and Richter JD (2006) Opposing polymerasedeadenylase activities regulate cytoplasmic polyadenylation. Mol Cell 24, 173-183   DOI
9 Hake LE and Richter JD (1994) CPEB is a specificity factor that mediates cytoplasmic polyadenylation during Xenopus oocyte maturation. Cell 79, 617-627   DOI
10 Tian B and Manley JL (2017) Alternative polyadenylation of mRNA precursors. Nat Rev Mol Cell Biol 18, 18-30   DOI
11 Chen CA and Shyu AB (2017) Emerging Themes in Regulation of Global mRNA Turnover in cis. Trends Biochem Sci 42, 16-27   DOI
12 Sonenberg N and Hinnebusch AG (2009) Regulation of translation initiation in eukaryotes: mechanisms and biological targets. Cell 136, 731-745   DOI
13 Jackson RJ, Hellen CU and Pestova TV (2010) The mechanism of eukaryotic translation initiation and principles of its regulation. Nat Rev Mol Cell Biol 11, 113-127   DOI
14 Danckwardt S, Hentze MW and Kulozik AE (2008) 3' end mRNA processing: molecular mechanisms and implications for health and disease. EMBO J 27, 482-498   DOI
15 Furuichi Y (2015) Discovery of m(7)G-cap in eukaryotic mRNAs. Proc Jpn Acad Ser B Phys Biol Sci 91, 394-409   DOI
16 Uchida N, Hoshino S, Imataka H, Sonenberg N and Katada T (2002) A novel role of the mammalian GSPT/eRF3 associating with poly(A)-binding protein in Cap/Poly(A)-dependent translation. J Biol Chem 277, 50286-50292   DOI
17 Morita M, Ler LW, Fabian MR et al (2012) A novel 4EHP-GIGYF2 translational repressor complex is essential for mammalian development. Mol Cell Biol 32, 3585-3593   DOI
18 Rom E, Kim HC, Gingras AC et al (1998) Cloning and characterization of 4EHP, a novel mammalian eIF4Erelated cap-binding protein. J Biol Chem 273, 13104-13109   DOI
19 Cho PF, Poulin F, Cho-Park YA et al (2005) A new paradigm for translational control: inhibition via 5'-3' mRNA tethering by Bicoid and the eIF4E cognate 4EHP. Cell 121, 411-423   DOI
20 Cho PF, Gamberi C, Cho-Park YA, Cho-Park IB, Lasko P and Sonenberg N (2006) Cap-dependent translational inhibition establishes two opposing morphogen gradients in Drosophila embryos. Curr Biol 16, 2035-2041   DOI
21 Lin S, Choe J, Du P, Triboulet R and Gregory RI (2016) The m(6)A Methyltransferase METTL3 Promotes Translation in Human Cancer Cells. Mol Cell 62, 335-345   DOI
22 Schweingruber C, Rufener SC, Zund D, Yamashita A and Muhlemann O (2013) Nonsense-mediated mRNA decay - mechanisms of substrate mRNA recognition and degradation in mammalian cells. Biochim Biophys Acta 1829, 612-623   DOI
23 Mino T, Murakawa Y, Fukao A et al (2015) Regnase-1 and Roquin Regulate a Common Element in Inflammatory mRNAs by Spatiotemporally Distinct Mechanisms. Cell 161, 1058-1073   DOI
24 Kaygun H and Marzluff WF (2005) Regulated degradation of replication-dependent histone mRNAs requires both ATR and Upf1. Nat Struct Mol Biol 12, 794-800   DOI
25 Kim YK, Furic L, Desgroseillers L and Maquat LE (2005) Mammalian Staufen1 recruits Upf1 to specific mRNA 3'UTRs so as to elicit mRNA decay. Cell 120, 195-208   DOI
26 Wang X, Zhao BS, Roundtree IA et al (2015) N(6)-methyladenosine Modulates Messenger RNA Translation Efficiency. Cell 161, 1388-1399   DOI
27 Wang X, Lu Z, Gomez A et al (2014) N6-methyladenosinedependent regulation of messenger RNA stability. Nature 505, 117-120   DOI
28 Ostareck DH, Ostareck-Lederer A, Wilm M, Thiele BJ, Mann M and Hentze MW (1997) mRNA silencing in erythroid differentiation: hnRNP K and hnRNP E1 regulate 15-lipoxygenase translation from the 3' end. Cell 89, 597-606   DOI
29 Besse F and Ephrussi A (2008) Translational control of localized mRNAs: restricting protein synthesis in space and time. Nat Rev Mol Cell Biol 9, 971-980   DOI
30 Deng Y, Singer RH and Gu W (2008) Translation of ASH1 mRNA is repressed by Puf6p-Fun12p/eIF5B interaction and released by CK2 phosphorylation. Genes Dev 22, 1037-1050   DOI
31 Stebbins-Boaz B, Cao Q, de Moor CH, Mendez R and Richter JD (1999) Maskin is a CPEB-associated factor that transiently interacts with elF-4E. Mol Cell 4, 1017-1027   DOI
32 Fu R, Olsen MT, Webb K, Bennett EJ and Lykke-Andersen J (2016) Recruitment of the 4EHP-GYF2 cap-binding complex to tetraproline motifs of tristetraprolin promotes repression and degradation of mRNAs with AU-rich elements. RNA 22, 373-382   DOI
33 Uniacke J, Holterman CE, Lachance G et al (2012) An oxygen-regulated switch in the protein synthesis machinery. Nature 486, 126-129   DOI
34 Nelson MR, Leidal AM and Smibert CA (2004) Drosophila Cup is an eIF4E-binding protein that functions in Smaugmediated translational repression. EMBO J 23, 150-159   DOI
35 Fukaya T, Iwakawa HO and Tomari Y (2014) MicroRNAs block assembly of eIF4F translation initiation complex in Drosophila. Mol Cell 56, 67-78   DOI
36 Jung MY, Lorenz L and Richter JD (2006) Translational control by neuroguidin, a eukaryotic initiation factor 4E and CPEB binding protein. Mol Cell Biol 26, 4277-4287   DOI
37 Napoli I, Mercaldo V, Boyl PP et al (2008) The fragile X syndrome protein represses activity-dependent translation through CYFIP1, a new 4E-BP. Cell 134, 1042-1054   DOI
38 Iwasaki S, Kawamata T and Tomari Y (2009) Drosophila argonaute1 and argonaute2 employ distinct mechanisms for translational repression. Mol Cell 34, 58-67   DOI
39 Fukao A, Mishima Y, Takizawa N et al (2014) MicroRNAs trigger dissociation of eIF4AI and eIF4AII from target mRNAs in humans. Mol Cell 56, 79-89   DOI
40 Meijer HA, Kong YW, Lu WT et al (2013) Translational repression and eIF4A2 activity are critical for microRNAmediated gene regulation. Science 340, 82-85   DOI
41 Filipowicz W and Sonenberg N (2015) The long unfinished march towards understanding microRNA-mediated repression. RNA 21, 519-524   DOI
42 Harcourt EM, Kietrys AM and Kool ET (2017) Chemical and structural effects of base modifications in messenger RNA. Nature 541, 339-346   DOI
43 Huttelmaier S, Zenklusen D, Lederer M et al (2005) Spatial regulation of beta-actin translation by Src-dependent phosphorylation of ZBP1. Nature 438, 512-515   DOI
44 Hussey GS, Chaudhury A, Dawson AE et al (2011) Identification of an mRNP complex regulating tumorigenesis at the translational elongation step. Mol Cell 41, 419-431   DOI
45 Friend K, Campbell ZT, Cooke A, Kroll-Conner P, Wickens MP and Kimble J (2012) A conserved PUF-AgoeEF1A complex attenuates translation elongation. Nat Struct Mol Biol 19, 176-183   DOI
46 Schwanhausser B, Busse D, Li N et al (2011) Global quantification of mammalian gene expression control. Nature 473, 337-342   DOI
47 Kong J and Lasko P (2012) Translational control in cellular and developmental processes. Nat Rev Genet 13, 383-394
48 Moore MJ (2005) From birth to death: the complex lives of eukaryotic mRNAs. Science 309, 1514-1518   DOI
49 Jung H, Gkogkas CG, Sonenberg N and Holt CE (2014) Remote control of gene function by local translation. Cell 157, 26-40   DOI
50 Ivanov P and Anderson P (2013) Post-transcriptional regulatory networks in immunity. Immunol Rev 253, 253-272   DOI
51 Castello A, Fischer B, Frese CK et al (2016) Comprehensive Identification of RNA-Binding Domains in Human Cells. Mol Cell 63, 696-710   DOI
52 Medenbach J, Seiler M and Hentze MW (2011) Translational control via protein-regulated upstream open reading frames. Cell 145, 902-913   DOI
53 Izaurralde E (2013) A role for eIF4AII in microRNAmediated mRNA silencing. Nat Struct Mol Biol 20, 543-545   DOI
54 Castello A, Fischer B, Eichelbaum K et al (2012) Insights into RNA biology from an atlas of mammalian mRNAbinding proteins. Cell 149, 1393-1406   DOI
55 Gerstberger S, Hafner M and Tuschl T (2014) A census of human RNA-binding proteins. Nat Rev Genet 15, 829-845   DOI
56 Mukhopadhyay R, Jia J, Arif A, Ray PS and Fox PL (2009) The GAIT system: a gatekeeper of inflammatory gene expression. Trends Biochem Sci 34, 324-331   DOI
57 Duncan K, Grskovic M, Strein C et al (2006) Sex-lethal imparts a sex-specific function to UNR by recruiting it to the msl-2 mRNA 3' UTR: translational repression for dosage compensation. Genes Dev 20, 368-379   DOI